
A Storage Engine for Modern Hardware

Viktor Leis



Disk-Based Database Systems [Harizopoulos et al., SIGMOD 2008]

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

1.8M

Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a

main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-

cuting the transaction on a no-overhead kernel.

buffer manager

latching

locking

logging

hand-coded
optimizations

useful work

In
st

ru
ct

io
ns

6.8%

34.6%

14.2%

16.3%

11.9%

16.2%

• disk-based systems are hopeless
• emergence of in-memory DBMS:

• radically new architecture
• <100K instructions/tx
• no good support for large data sets



Storage Trends [CIDR 2020]

disk

DRAM

0.001

0.01

0.1

1

10

2000 2005 2010 2015 2020

year

G
B

/$
 [

lo
g

 s
ca

le
]



Storage Trends [CIDR 2020]

disk flash

DRAM

0.001

0.01

0.1

1

10

2000 2005 2010 2015 2020

year

G
B

/$
 [

lo
g

 s
c
a

le
]



Storage Trends [CIDR 2020]

disk flash

DRAM

20x

0.001

0.01

0.1

1

10

2000 2005 2010 2015 2020

year

G
B

/$
 [

lo
g

 s
c
a

le
]



LeanStore Features

• high-performance storage engine for OLTP
• RocksDB-like C++ interface
• highly scalable on multi-cores CPUs
• optimized for directly-attached NVMe arrays
• B-tree indexes with row-wise storage
• logging, checkpointing, and recovery
• concurrency control implmentation in progress



Buffer Management [ICDE 2018]

• page-based storage (4 KB)
• pointer swizzling: page reference can be pointer or page id
• lightweight two-stage page replacement algorithm (random + FIFO)

cold
(SSD)

hot
(RAM)

cooling
(RAM)

swizzle

unswizzle

evict
load,

swizzle



Indexing

• almost textbook B+trees
• keys and values have variable size
• keys are prefix-compressed
• cache optimization: first four key bytes are in slot
• not quite as fast as the best in-memory structures but robust

le.com

https://
prefix

fau.
slots
goog

tuple2 .de tuple1

→

←



(Optimistic) Latching [DEBULL 2019, Damon 2020]

• each page has
• version: atomic<u64>
• mutex: pthread_rwlock

• page access modes:
• optimistic
• shared
• exclusive

• B-tree is synchronized using Optimistic Lock Coupling
• buffer managers don’t need memory reclamation (!)



Contention and Space Management in B-trees [CIDR 2021]

• Optimistic Lock Coupling solves read contention
• B-trees can have unnecessary write contention, solved by Contention Split:

• use probabilistic per-page access counters to detect contention
• split if contention is detected

• B-trees have can low space utilization, solved by XMerge:
• before page is evicted from buffer pool, check its and its neighboring fill factors
• merge to save space



Logging, Checkpoints, and Recovery with ARIES

• lightweight in-memory logging approaches are not really feasible for
out-of-memory workloads

• ARIES has many nice features:
• arbitrarily large transactions
• fuzzy and cheap checkpoints
• fast recovery

• but standard ARIES is inefficient and not scalable on multi-core CPUs



Logging, Checkpoints, and Recovery in LeanStore [SIGMOD 2020]

• physiological WAL with read+undo info
• scalable distributed per-thread logging

• WAL on PMem: low-latency commits with remote flush avoidance
• WAL on SSD: high throughput with group commit

• continuous fuzzy checkpoints
• multi-threaded recovery



In-Memory TPC-C Performance (64 Core AMD Rome)

0

1M

2M

3M

1 32 64 96 128

Threads = Warehouses

T
P

C
-C

 p
e

rf
. 

[t
xn

/s
]



Out-Of-Memory TPC-C Performance (10 GB Buffer Pool, 7 × PCIe 3 SSDs)

0

250K

500K

750K

1M

10 30 100 300

Data Size [GB]

T
P

C
-C

 p
e

rf
. 

[t
xn

/s
]

read

write

total

0

3

6

9

12

10 30 100 300

Data Size [GB]

IO
 [

G
B

/s
]



Conclusions

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

1.8M

Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a

main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-

cuting the transaction on a no-overhead kernel.

buffer manager

latching

locking

logging

hand-coded
optimizations

useful work

In
st

ru
ct

io
ns

6.8%

34.6%

14.2%

16.3%

11.9%

16.2%

• old techniques optimized for
modern hardware

• made lots of progress
• currently a research prototype
• still many interesting technical
challenges ahead (stay tuned)

http://leanstore.io

http://leanstore.io


References

• [SIGMOD 2008]: OLTP through the looking glass, and what we found there, Harizopoulos et al.

• [ICDE 2018]: LeanStore: In-Memory Data Management Beyond Main Memory, Leis et al.

• [DEBULL 2019]: Optimistic Lock Coupling: A Scalable and Efficient General-Purpose
Synchronization Method, Leis et al.

• [Damon 2020]: Scalable and robust latches for database systems, Böttcher et al.

• [SIGMOD 2020]: Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage
Engines, Haubenschild et al.

• [CIDR 2020]: Exploiting Directly-Attached NVMe Arrays in DBMS, Haas at al.

• [CIDR 2021]: Contention and Space Management for B-Trees, Alhomssi at al.


