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VL Query processing on encrypted data

Paradigm shift: cloud computing

e Secure outsourced databases
e First described in 2002

New threat model

e Untrusted server

o  Curious cloud providers
o Malicious governments
o Compromised cloud infrastructure

e Trusted client
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Query processing on encrypted data

Operate directly on encrypted data

e Homomorphic encryption

e Property preserving encryption
e Searchable encryption

e Secure multiparty computation

Create a trusted “zone” on the untrusted server

e Secure Coprocessor (SCPU), FPGA
e Intel SGX, ARM Trustzone, AMD SEV, Microsoft VBS
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o Existing literature on EDBMS

Trusted Execution Environment (TEE)

e OLTP: StealthDB®, EnclaveDB®, SQL Server AEv2%)
OLAP: Opaque'®, ObliDB®), EncDBDB(”)

Our contribution

e Use of vectorized query engine
e Focus on high efficiency
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B Research goal

Design EDBMS prototype

@~ DuckDB

e DuckDB and Intel SGX

e Vectorized query execution

SGX

e Focus on minimizing overhead
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o Query execution models
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CWL_

Intel SGX

Hardware enforced “enclaves”

Split codebase (secure/unsecure)

Split data (secure/unsecure)

Trusted Code

Untrusted Code

Create Enclave Process Secrets

@ ©

Call Trusted Return

©

Normal
Execution

Call gate

Privileged System Code
0S, VMM, BIOS, SMM
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B performance cost of Intel SGX

Limited secure memory

e ~172MB on 10th gen Intel
e ~96MB on 6th - 9th gen Intel

Performance critical factors

e Secure memory paging
e Enclave-mode entry/exit (~ 1000 - 16000 cycles)

e Access to secure memory (CPU cache misses)
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B Overhead of decryption

Storage cost

e [Extradata to store (e.g. initialization vector)
e Encrypted data has poor compression

Computational cost

e Depends strongly on buffer size
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B Overhead of decryption

Decryption time per byte
AES128 CTR storage overhead e il
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EI%* SGX-based EDBMS design

Vectorized execution matches requirements well

e No large materialization
e Easily amortize encryption overhead

e Prevent excessive enclave entries
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B SGX-based DBMS design

Which parts to run in enclave?

Memory

Enclave

DBMS

&

10 shim

Memory Memory
Enclave DBMS DBMS query parser, query planner, 10 shim
DBMS LY ASDENS Enclave
query executor & query planner, &> |pBMS
10 shim operator query executor
comparator

Image source: StealthDB®
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B Two designs tested

Model 1: Graphene SGX

e Whole DBMS in enclave

Using Graphene-SGX

Model 2: SGX SDK

Using SGX SDK

Operators in enclave

Memory

Enclave

DBMS & | 10 shim

Memory

DBMS query parser, query planner, 10 shim

Enclave
<& |oBMms

operator query executor
comparator
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B Baseline Encrypted Implementation

Encrypted Scan

Data encrypted per vector
Decryption in scan operator
Fixed length data-types only
(no strings yet)
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Results: Overview

Architectures

DuckDB TPC-H QO06, scale_factor=8, vector_size=8192
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Results: Impact of vector size

Architectures

DuckDB TPC-H QO06, scale_factor=1
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Results: Graphene-SGX

Architectures

DuckDB TPC-H, scale_factor=8 vector_size=8192

40 HEmm Baseline
B Encrypted Scan
35 - mmm Graphene-SGX

Runtime normalized to Baseline

Benchmark
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CWL_

Results: Effect of compression

DuckDB TPC-H QO06, scale_factor=8, vector_size=8192

Runtime normalized to Baseline

Encrypted Scan

Graphene-SGX

SGX SDK Base

B uncompressed
B compressed

SGX SDK Base Switchless

e Compressed execution

e (Compression ratio: 3x

e SGX SDK implementation
suffers from extra enclave

entries

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 19



Conclusions

e Vectorized execution fits SGX model well
e Low overhead encrypted query processing

e Both models analyzed are feasible
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Future work

e Support (efficient) joins
e Support string data (see encDBDB(?7)
e Oblivious execution (see ObliDB(®)

e Other TEEs (e.g. ARM Trustzone)
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L Questions?
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