Vectorized Query Processing
over encrypted data

MSc Research Project
Sam Ansmink (sam@cwi.nl)

Supervisor: Peter Boncz (VU, CWTI)
Second reader: Marc Makkes (VU)

VU %? e UNIVERSITY OF AMSTERDAM



VL Query processing on encrypted data

Paradigm shift: cloud computing

e Secure outsourced databases
e First described in 2002

New threat model

e Untrusted server

o  Curious cloud providers
o Malicious governments
o Compromised cloud infrastructure

e Trusted client

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 2



Query processing on encrypted data

Operate directly on encrypted data

e Homomorphic encryption

e Property preserving encryption
e Searchable encryption

e Secure multiparty computation

Create a trusted “zone” on the untrusted server

e Secure Coprocessor (SCPU), FPGA
e Intel SGX, ARM Trustzone, AMD SEV, Microsoft VBS

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 3



UL Query processing on encrypted data

Create a trusted “zone” on the untrusted server

e Secure Coprocessor (SCPU), FPGA
‘ e Intel SGX, ARM Trustzone, AMD SEV, Microsoft VBS

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 4



o Existing literature on EDBMS

Trusted Execution Environment (TEE)

e OLTP: StealthDB®, EnclaveDB®, SQL Server AEv2%)
OLAP: Opaque'®, ObliDB®), EncDBDB(”)

Our contribution

e Use of vectorized query engine
e Focus on high efficiency

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 5



B Research goal

Design EDBMS prototype

@~ DuckDB

e DuckDB and Intel SGX

e Vectorized query execution

SGX

e Focus on minimizing overhead

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 6



o Query execution models

AGGREGATION

next() Tuple
v

FILTER

next() Tuple

SCAN

Tuple

Tuple-at-a-time

AGGREGATION AGGREGATION
Vector with Intermediate
next() L N tuples call() | result
FILTER FILTER
Vector with Intermediate
next() L N tuples call()‘y result
SCAN SCAN
Vector with All tuples in
N tuples column
Vectorized Column-at-a-time

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink

7



CWL_

Intel SGX

Hardware enforced “enclaves”

Split codebase (secure/unsecure)

Split data (secure/unsecure)

Trusted Code

Untrusted Code

Create Enclave Process Secrets

@ ©

Call Trusted Return

©

Normal
Execution

Call gate

Privileged System Code
0S, VMM, BIOS, SMM

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 8



B performance cost of Intel SGX

Limited secure memory

e ~172MB on 10th gen Intel
e ~96MB on 6th - 9th gen Intel

Performance critical factors

e Secure memory paging
e Enclave-mode entry/exit (~ 1000 - 16000 cycles)

e Access to secure memory (CPU cache misses)

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 9



B Overhead of decryption

Storage cost

e [Extradata to store (e.g. initialization vector)
e Encrypted data has poor compression

Computational cost

e Depends strongly on buffer size

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 10



B Overhead of decryption

Decryption time per byte
AES128 CTR storage overhead e il

(]
o
o

3.00

-
=}
w

275

b
w
o

250

=
N
wn

225

=
o
o

a3

175

8

150

125

(]
w

Storage size relative to unencrypted
~N
o
=}
Decryption time per byte relative to large buffers

100

o

1536 4096 8 o 576 1536 4096
Buffer size [bytes] Buffer size [bytes]

R
e
v
=~
o

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 11



EI%* SGX-based EDBMS design

Vectorized execution matches requirements well

e No large materialization
e Easily amortize encryption overhead

e Prevent excessive enclave entries

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 12



B SGX-based DBMS design

Which parts to run in enclave?

Memory

Enclave

DBMS

&

10 shim

Memory Memory
Enclave DBMS DBMS query parser, query planner, 10 shim
DBMS LY ASDENS Enclave
query executor & query planner, &> |pBMS
10 shim operator query executor
comparator

Image source: StealthDB®

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink

13



B Two designs tested

Model 1: Graphene SGX

e Whole DBMS in enclave

Using Graphene-SGX

Model 2: SGX SDK

Using SGX SDK

Operators in enclave

Memory

Enclave

DBMS & | 10 shim

Memory

DBMS query parser, query planner, 10 shim

Enclave
<& |oBMms

operator query executor
comparator

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink

14



B Baseline Encrypted Implementation

Encrypted Scan

Data encrypted per vector
Decryption in scan operator
Fixed length data-types only
(no strings yet)

AGGREGATION
next() | Vector
FILTER
next() | Vector
SCAN

Encrypted vector

L

Buffer
Manager

|

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 15



Results: Overview

Architectures

DuckDB TPC-H QO06, scale_factor=8, vector_size=8192

3.5 -

3.0 1

2.5 1

20 A

15 A

10 -

Runtime normalized to Baseline

0.5 -

0.0 -
Baseline Encrypted Scan Graphene-SGX SGX SDK base SGX SDK switchless

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 16



Results: Impact of vector size

Architectures

DuckDB TPC-H QO06, scale_factor=1

10 - mmm Baseline
s Encrypted Scan
B Graphene-SGX
mmm SGX SDK Base
g7 mmm SGX SDK Switchless

Runtime normalized to Baseline

4096
Vector size

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 17



Results: Graphene-SGX

Architectures

DuckDB TPC-H, scale_factor=8 vector_size=8192

40 HEmm Baseline
B Encrypted Scan
35 - mmm Graphene-SGX

Runtime normalized to Baseline

Benchmark

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 18



CWL_

Results: Effect of compression

DuckDB TPC-H QO06, scale_factor=8, vector_size=8192

Runtime normalized to Baseline

Encrypted Scan

Graphene-SGX

SGX SDK Base

B uncompressed
B compressed

SGX SDK Base Switchless

e Compressed execution

e (Compression ratio: 3x

e SGX SDK implementation
suffers from extra enclave

entries

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 19



Conclusions

e Vectorized execution fits SGX model well
e Low overhead encrypted query processing

e Both models analyzed are feasible

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 20



Future work

e Support (efficient) joins
e Support string data (see encDBDB(?7)
e Oblivious execution (see ObliDB(®)

e Other TEEs (e.g. ARM Trustzone)

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 21



CHL References

Haciglimus, Hakan, et al. "Executing SQL over encrypted data in the database-service-provider model."
Proceedings of the 2002 ACM SIGMOD international conference on Management of data. 2002.

Gribov, Alexey, Dhinakaran Vinayagamurthy, and Sergey Gorbunov. "Stealthdb: a scalable encrypted database
with full sql query support." arXiv preprint arXiv:1711.02279 (2017).

Priebe, Christian, Kapil Vaswani, and Manuel Costa. "EnclaveDB: A secure database using SGX." 2018 IEEE
Symposium on Security and Privacy (SP). |IEEE, 2018.

Antonopoulos, Panagiotis, et al. "Azure SQL Database Always Encrypted." Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 2020.

Zheng, Wenting, et al. "Opaque: An oblivious and encrypted distributed analytics platform." 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17). 2017.

Eskandarian, Saba, and Matei Zaharia. "ObliDB: oblivious query processing using hardware enclaves." arXiv
preprint arXiv:1710.00458 (2017).

Fuhry, Benny, and Florian Kerschbaum. "Encdbdb: Searchable encrypted, fast, compressed, in-memory database
using enclaves." arXiv preprint arXiv:2002.05097 (2020).

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 22



L Questions?

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink 23



