Imperial College e | SDS
Loﬁdon J '@

Making Training In
Distributed Deep Learning Adaptive

Peter Pietzuch

Imperial College London

http://Isds.doc.ic.ac.uk
<prp@imperial.ac.uk>

Joint work with Luo Mai, Guo Li, Marcel Wagenlander, Konstantinos Fertakis and Andrei-Octavian Brabete

Dutch DB Seminar — June 2021

Large-Scale Data & Systems (LSDS) Group

+ 8%
Currently 20 members '@ LSDS
(4 faculty, 4 post-docs, 12 PhD students) http://lsds.doc.ic.ac.uk

LSDS mission statement:

“To support the design and engineering of
scalable, robust and secure data-intensive applications”

Peter Pietzuch - Imperial College London 2

Research interests and expertise {3 LSDS

" Systems: " Application domains:
“ Distributed systems ® Data management
® Operating systems = Stream processing
" Compilers ® Graph processing
“ Networks ® Machine learning/Al
® Runtime systems “ Blockchain

" Hardware & Infrastructure:

= Multicore CPUs " Techniques:

" Trusted Hardware, TEEs " Resource management

= Accelerators/GPUs * Scheduling

= Data-center networks, RDMA " Query optimisation

* Edge infrastructure “ Network programmability

Peter Pietzuch - Imperial College London

Past & Present LSDS Research

= Distributed dataflow systems
[SIGMOD’18, ICDE’16, ATC’14, SIGMOD’13]

» Multicore data processing
[SIGMOD’16, VLDB’14]

» Heterogeneous architectures
[CIDR’19, SIGMOD’16]

= Stream processing

[SIGMOD’20, EDBT’20, VLDB’17, SIGMOD’16,
CIDR’15, ICDE’11]

» loT data processing
[VLDB’18]

» Scalable machine learning
[OSDI'20, HotCloud’20, VLDB’19, SysML’18]

= Expressive machine learning
[OSDI'20, HotCloud’20, SysML’18]

» Decentralised machine learning
[SoCC’16]

Peter Pietzuch - Imperial College London

Data

Distributed

Management Computing

LSDS Group: Systems Research

Machine
Learning/Al

Security

= Serverless computing
[USENIX ATC’20]

» Container scheduling
[SoCC’19, EuroSys’18]

= Edge computing

[TMC, MobiSys’15]

* I[n-network
processing

[USENIX ATC’17, USENIX ATC’16,
CoNEXT’14]

= Trusted hardware
[ASPLOS’21, EuroSys’21, VEE’21, EuroSys’18,
USENIX ATC’17, OSDI'16]

= Blockchain
[SOSP’17, BITCOIN’17]

= Information flow control
[Middleware’16, ICDE’14, ATC’10]

= Cloud/web security
[CCS’15, WebApps’11]

Deep Neural Networks (DNNs) Have a Big Impact

Revolutionised solutions in vision, speech recognition, ...
DNN models are trained by giving examples (instead of programming)

words tOpiCS

labels -~
{T\”) o

ello audience

text

When DNN output is
wrong, tweak its
parameters

)

Peter Pietzuch - Imperial College London

Training Deep Neural Networks (DNNSs)

Obtain DNN model that minimises classification error
Use Stochastic Gradient Descent (SGD) for training:

1. Begin with random model

2. Consider mini-batch of 5
training data 5
3. Iteratively calculate gradients
& update model lowest error

weights w

random optimal

Model weights w

convergence

Deep Learning on GPUs

GPUs are good at parallelising gradient computation

Peter Pietzuch - Imperial College London

Distributed Deep Learning Systems

Combine large training data and models

\ *\

Tensor

O PyTorch

Peter Pietzuch - Imperial College London

Collective

Communication
(all-reduce)

—>

Gradients V —
—<

BatCh

Worker

—

- Dataflow

- Dataset

o
EE@ JXL_O_IG

orker 1 H-E |
=

Worker 3

Parameters in Distributed Deep Learning Systems

Users must tune parameters to optimise time-to-accuracy

Hyper-parameters
 Batchsize ---
« Learning rate

SmaII batch or
{ ‘Iarge batch size?

Peter Pietzuch - Imperial College London

r
|

1

|

1

|

| Worker 1
I orker
: /"

|

1

|

1

|

L

)/

(e 1)\ y R
oo) . y

1
]
1
:
]
E Workero\ Worker 3
:
]
1
|

1

|

1

|

1

|

1

|

1

|

1 | |
I [;].E I 1
| 1 |
| | |
> : ! Worker 2 :
| 1 |
l ! 4 N !
|

1

|

1

|

1

|

1

|

1

System parameters
 Number of workers
« Communication topology

o .
@ Ring or binary-tree?

Issues with Parameter Tuning

Examples of empirical parameter tuning Issue

“Change batch size at epoch 30, 60 and 90 when Dataset-specific
training with ImageNet.” [1]

“Linearly scale the learning rate with the #workers when Model-specific
training ResNet models.” [2]

“Set the topology to a ring by default.” [3] Cluster-specific

Dynamic Parameter Adaptation

Example OpenAl predicts batch size based on Gradient Noise Scale (GNS)

v
Intuition GNS measures variation in data batches

\

 When GNS is small > keep batch size

Proposal
P When GNS is large - increase batch size

Peter Pietzuch - Imperial College London 11

Proposals for Dynamic Parameter Adaptation

AdaScale SGD: A User-Friendly Algorithm for Distributed Training

Tyler B. Johnson ' ' Pulkit Agrawal "' Haijie Gu' Carlos Guestrin'

Gradient variance

Peter Pietzuch - Imperial College London

Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored
Approximate Curvature for Deep Convolutional Neural Networks

Kazuki Osawa' Yohei Tsuji'® Yuichiro Ueno' Akira Naruse® Rio Yokota™ Satoshi Matsuoka*'

'School of Computing, Tokyo Institute of Technology
*Global Scientific Information and Computing Center, Tokyo Institute of Technology
‘NVIDIA
“RIKEN Center for Computational Science

Gradient second-order metrics

RESOURCE ELASTICITY IN DISTRIBUTED DEEP LEARNING

Andrew Or' Haoyu Zhang'® Michael J. Freedman '

Worker performance metrics

12

Another Example of Adaptation

Distributed deep learning is Example: Training Megatron-LM?

resource-intensive * Training of BERT-like model
* 512 NVIDIA V100 GPUs

®* One epoch (68,507 iterations) takes 2.1 days
Accelerated hardware poch () y

resources (e.g. GPUs) are Cost on Azure: $92 613
expensive ’

Using Transient Cloud Resources for Training

E.g. AWS Spot instances, Azure Spot VMs

Follow laws of free market

Revocations with short notification
- o,
Economic incentive: cost reduction of up to 90%

A Megatron-LM epoch would drop from $92,613 to $15,152

14

Transient Resources Require Adaptation

New workers become available or old workers get revoked
— System must cope with disappearing resources

Changes can happen at any time
— System must ensure consistency of updates

Cluster

worker O

worker 1

o)
e
IS
s

worker 3

15

Elastic Scaling F

lequires Adaptation

Cluster size/number of GPUs changes over time
— System must adapt to different network topologies

More
efficient
with larger
network
topologies

Adapt synchronisation

asynchronous
HogWild! Strategy
AD-PSGD
synchronous

SMA
S-SGD

Better model accuracy

16

Open Challenges

Can we design distributed deep learning systems that supports adaptation?

Design challenges:
 How to support different types of adaptation?
 How to adapt based on large data volumes?

 How to change parameters of workers consistently?

Peter Pietzuch - Imperial College London

17

Existing Approaches for Adaptation

1. Specific mechanisms for adaptation 2. Processing of

. N . monitoring data offline
AutoScaling Horovod

L [MLSys’20] J L Elastic

L J

....‘

(PyTorch 1(TensorFlow] 1 Logs g d
Elastic Elastic @ TensorBoar
- 7N g Worker Worker EEEEEEN l>
Custom adaptation 0 2 m Ifl YW
without generic APls
Worker
3

Expensive data movement

3. Checkpoint-and-recover

Write
checkpoint

Release Acquire Start training Read
resources resources process checkpoint

Not possible to change parameters during runtime

Peter Pietzuch - Imperial College London

18

oONE:

KungFu - Distributed Training Library HotCloud ‘20
Contributions:
GNS Policy Elastic Policy
. Supports
1. SuPpor"flng o Monitoring, communication and adaptation functions g;ﬁaegae‘n:attyggﬁs
adaptation policies P
Monitoring training ﬂ ﬂ Adapting parameters
4 N\ N\ N\ [N\ -
2. Monitoring eH eH eH eH
inside dataflow IPrOCGSS‘fS
- 7\ 7\ 7\ 7T ci‘r?neo‘r,:i)t::in neg
TensorFlow/PyTorch/Keras Workers data
Asynchronous collective communication layer J Adapts
3. Distributing stateful
parameter updates Dynamic worker membership tables]' workers

consistently

Peter Pietzuch - Imperial College London 19

1. Supporting Adaptation Policies

Express Adaptation as Control Loops

Control loop

Monitoring‘ l Adaptation

4 N\ N\)

ic | lfa] e

_ /L J g J
Workers

Control loop monitors workers and uses monitored metrics to change parameters

Peter Pietzuch - Imperial College London

Adaptation Policies

Monitor

Write adaptation policies using
expressive API functions:

Monitoring

* grad_noise_scale
* grad_variance

Peter Pietzuch - Imperial College London

Communication

allreduce
broadcast

Communication

-

) ("

~

Policy

_

1]
[LUSE \[EH%J

Policy

J

I 1 Adaptation

Workers

Adaptation

resize
set _tree

22

Example: Adaptation Policy for GNS 1 TensorFlow

1. Adaptation logic in policy

import kungfu as kf [Policy]
class GNSPolicy(kf.BasePolicy) A
def after step(self):
gns = ocrad noise scalel) 2. Wrap Optimizer to

avg = kf allreducefgns, “avg) enable monitoring

if avg > self.prev:

| kf.resize(kf.size() + 1) KungFu Optimizer
opt = SGDOptimizer(..) N
opt =|kf.Optimizer (opt) [Step N Step N+1]
hook =|kf.Hook{GNSPolicy(...)) Hook
model, data = ..
model.train(data, opt, hook) 3. KungFu Hooks add policy

Peter Pietzuch - Imperial College London

23

2. Monitoring Inside Dataflow

Efficient Monitoring During Training

Problem: High monitoring cost reduces adaptation benefit

Idea: Include monitoring operators inside dataflow

={ gradients H gnss]—’[allreduces;]

Dataflow : \
graph [gradlenh]
Gradient Dataflow ={ gradient]—'[gns; H allreducez]
Operator
gns; } | allreduce;]
Gradient-Noise-Scale Allreduce
Operator Operator

Monitoring takes advantage of optimisations in dataflow engines
and collective communication support

Peter Pietzuch - Imperial College London 25

Efficient Collective Communication

Problem: Extensive use of collective communication reduces performance

Worker O Worker 1
1. Dataflow engine
launches operators allreduce, allreduce,
asynchronously
allreduce, allreduce;

[Coordinating synchronous allreduce operations limits system scalability]

allreduce, allreduce,

v allreduce; allreduce;
Time

2. Message-Passing-Interface (MPI) implementation assumes
synchronous execution

Peter Pietzuch - Imperial College London

Asynchronous Collective Communication

Idea: Make collective communication asynchronous

Collective Message

Collective State

key data
’
Worker 0 :
>4
allreduce;
1. Pass message
asynchronously
v
Time

key data control
2. Maintain Worker 1
allreduce state '
> allreduce,
allreduce; 2

3. Pass completed
result downstream

No need for coordination in asynchronous collective communication

Peter Pietzuch - Imperial College London

27

3. Distributing Parameter Updates

Changing System Parameters

Problem: Parameter adaptation affects state consistency

Value of # workers 10 Value may be stale

|

) () (Other system parameters:
[gns] :l allreduce] :l avg] « \Worker rank
« Communication topology
Dataflow for averaging GNS .

Changing system parameters therefore typically requires system restart

Peter Pietzuch - Imperial College London 29

Distributed Mechanism for Changing Parameters

Idea: Decouple system parameters from dataflow state

[gns HallreduceH avg]

A

1. System parameters as

[.] 2. Update worker membership using
size_op
computational operators T

collective communication

Parameter update

\ 4 \ 4

EE— Dynamic worker membership | Membership | Membership >

KungFu communication layer

Always obtains up-to-date view of system parameters

Peter Pietzuch - Imperial College London

30

Inconsistent Parameter Updates

Problem: Incomplete parameter changes may lead to inconsistency

Parameter Parameter Paramete~

\

. Worker failure
A due to elasticity

Worker O Worker 1 Worker 2

31

Atomic Parameter Updates

Solution: Wait for collective communication operations to finish before
updating parameters

Parameter Parameter Parameter

Barrier

Worker O Worker 1 Worker 2

Discard update if communication fails

32

Experimental Evaluation

How Effectively Does KungFu Adapt?

Validation Accuracy (%

GNS policy, CIFAR-10 ResNet, 4 GPUs

.
-——

1

Small batch size

0

3000 4000 5000

Time (seconds)

1000 2000

6000

Small batch size reaches high accuracy, but converges slowly

How Effectively Does KungFu Adapt?

GNS policy, CIFAR-10 ResNet, 4 GPUs

Validation Accuracy (%
(@)
o

0 1000 2000 3000 4000 5000 6000
Time (seconds)

Large batch size finishes quickly, but accuracy suffers

How Effectively Does KungFu Adapt?

GNS policy, CIFAR-10 ResNet, 4 GPUs R :

100 Fr——— '4096
S 28: s S e SN R £ 3584
g 700 Botch < . 3072
S 0. <:I atch size over time 52560§
£ 50 2048 <
S e 1536 3
S 1024
(_U 20_ E
= 10 512

ol .

0 1000 2000 3000 4000 5000 6000 i
Time (seconds)

GNS predicts how effective batch size should increase during training

How Effectively Does KungFu Adapt?

GNS pollcy, CIFAR-10 ResNet, 4 GPUs

100 4096
< 909 _ 3584
3 o 3072

§ 70] D
3 60 - 2560 (%
< 50 : 2048 <
§ gg- 1536 8
o 1024

> 10 512

0 1000 2000 3000 4000 5000 6000
Time (seconds)

Adaptation Policy has low overhead due to embedded monitoring

Does KungFu Adapt to Changing Cluster Sizes?

Cluster:

up to 32 workers

Hardware:
Nvidia K80

ResNet50/
ImageNet

P\ \f~—|

-8 3 O ’ r=a _’\‘_,r " \A’ e r _‘I'i U = "r A e "l' Ve N
@)
O -1 |
& - |
= 20 |‘ I Switching from S-SGD
O i ! _to AD-PSGD
(@) \mv=~=n==R02)
© —— AD-PSGD
§ 10- S-SGD

—-— KungFu

5 10 15 20 25 30
Cluster size

KungFu switches synchronisation strategy based on cluster size

Peter Pietzuch - Imperial College London

38

What is KungFu’s Distributed Performance?

Compare KungFu with state-of-the-art distributed training library (Horovod)

32 VMs, K-80 GPU, ImageNet/ResNet
60

50

40
30
20
10
0

1 8 16

Horovod ® KungFu

52% gap

Per-VM Throughput

Asynchronous collective communication enables KungFu to scale better

Peter Pietzuch - Imperial College London 39

Conclusions: Making Deep Learning Adaptive

Current systems have no unified support for adaptation

KungFu makes distributed deep learning adaptive

Adaptation Policies } Decouple adaptation from training program

HEEE

Asynchronous collective communication

Dynamic worker membership tables | | Provide powerful distributed primitives

Thank You — Any Questions? « “‘N
KungFu @ Github Peter Pietzuch

https://github.com/Isds/KungFu https://Isds.doc.ic.ac.uk — prp@imperial.ac.uk

Peter Pietzuch - Imperial College London

()

. J

} Take advantage of efficient dataflow execution

