
Frank McSherry, Chief Scientist

Materialize and Streaming SQL
Standard SQL as a Basis for Streaming Data Infrastructure

OLTP

Reads

Writes

Transactions

Analytics

Dashboards

Monitoring

OLTP

Reads

Writes

Transactions

Analytics

Dashboards

Monitoring

OLTP OLAP

Reads

Writes

Transactions

Analytics

Dashboards

Monitoring

OLTP OLAP

Reads

Writes

Transactions

Analytics

Dashboards

Monitoring

(row-based) (columnar)

different designs

OLTP OLAP

Reads

Writes

Transactions

Analytics

Dashboards

Monitoring

(row-based) (columnar)

OLTP OLVM

Reads

Writes

Transactions

Analytics

Dashboards

Monitoring

(pull) (push)

different designs

Standard SQL is expressive enough for
streaming data infrastructure tasks...

...with a SQL system like Materialize.

Standard SQL is expressive enough for
streaming data infrastructure tasks...

...with a SQL system like Materialize.

Materialize
Maintain SQL views on streams

SQL92, even the hard stuff.

-- a stream of CDC input
CREATE SOURCE foo FROM ...
-- traditional SQL views
CREATE VIEW bar AS SELECT ...
-- indexes arrange streams
CREATE INDEX baz ON bar ...
-- emit CDC stream somewhere
CREATE SINK quux FROM bar ...

Materialize
Maintain SQL views on streams

-- a stream of CDC input
CREATE SOURCE lineitem_src
FROM FILE '/Users/
 mcsherry/
 Projects/
 datasets/
 dbgen-1/
 lineitem.tbl'
FORMAT CSV
WITH 17 COLUMNS DELIMITED BY '|';

SQL92, even the hard stuff.

-- a stream of CDC input
CREATE SOURCE foo FROM ...
-- traditional SQL views
CREATE VIEW bar AS SELECT ...
-- indexes arrange streams
CREATE INDEX baz ON bar ...
-- emit CDC stream somewhere
CREATE SINK quux FROM bar ...

Materialize
Maintain SQL views on streams

-- traditional SQL views
CREATE VIEW lineitem AS
SELECT
 column1::integer as l_orderkey,
 column2::integer as l_partkey,
 column3::integer as l_suppkey,
 column4::integer as l_linenumber,
 column5::decimal(15,2) as l_quantity,
 column6::decimal(15,2) as l_extendedprice,
 column7::decimal(15,2) as l_discount,
 column8::decimal(15,2) as l_tax,
 column9 as l_returnflag,
 column10 as l_linestatus,
 column11::date as l_shipdate,
 column12::date as l_commitdate,
 column13::date as l_receiptdate,
 column14 as l_shipinstruct,
 column15 as l_shipmode,
 column16 as l_comment
FROM
 lineitem_src;

SQL92, even the hard stuff.

-- a stream of CDC input
CREATE SOURCE foo FROM ...
-- traditional SQL views
CREATE VIEW bar AS SELECT ...
-- indexes arrange streams
CREATE INDEX baz ON bar ...
-- emit CDC stream somewhere
CREATE SINK quux FROM bar ...

Materialize
Maintain SQL views on streams

-- indexes arrange streams
CREATE INDEX pk_lineitem ON
 lineitem (l_orderkey, l_linenumber);
CREATE INDEX fk_lineitem_orderkey ON
 lineitem (l_orderkey);
CREATE INDEX fk_lineitem_partkey ON
 lineitem (l_partkey);
CREATE INDEX fk_lineitem_suppkey ON
 lineitem (l_suppkey);
CREATE INDEX fk_lineitem_partsuppkey ON
 lineitem (l_partkey, l_suppkey);

SQL92, even the hard stuff.

-- a stream of CDC input
CREATE SOURCE foo FROM ...
-- traditional SQL views
CREATE VIEW bar AS SELECT ...
-- indexes arrange streams
CREATE INDEX baz ON bar ...
-- emit CDC stream somewhere
CREATE SINK quux FROM bar ...

Materialize
Maintain SQL views on streams

CREATE MATERIALIZED VIEW tpch_q05 AS
SELECT
 n_name,
 sum(l_extendedprice * (1 - l_discount)) AS revenue
FROM
 customer,
 orders,
 lineitem,
 supplier,
 nation,
 region
WHERE
 c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND l_suppkey = s_suppkey
 AND c_nationkey = s_nationkey
 AND s_nationkey = n_nationkey
 AND n_regionkey = r_regionkey
 AND r_name = 'ASIA'
 AND o_orderdate >= DATE '1994-01-01'
 AND o_orderdate < DATE '1995-01-01'
GROUP BY
 n_name;

SQL92, even the hard stuff.

-- a stream of CDC input
CREATE SOURCE foo FROM ...
-- traditional SQL views
CREATE VIEW bar AS SELECT ...
-- indexes arrange streams
CREATE INDEX baz ON bar ...
-- emit CDC stream somewhere
CREATE SINK quux FROM bar ...

Materialize
Maintain SQL views on streams

-- emit cdc streams somewhere
CREATE SINK tpch_q05_sink
FROM tpch_q05
INTO KAFKA
 BROKER 'localhost'
 TOPIC 'tpch-q05-sink'
FORMAT AVRO
ENVELOPE UPSERT;

SQL92, even the hard stuff.

-- a stream of CDC input
CREATE SOURCE foo FROM ...
-- traditional SQL views
CREATE VIEW bar AS SELECT ...
-- indexes arrange streams
CREATE INDEX baz ON bar ...
-- emit CDC stream somewhere
CREATE SINK quux FROM bar ...

 Materialize

 Timely Dataflow

Differential

Like an OS for streaming
data-parallel compute

Language for low-latency
incremental computation

SQL92 wrapper

Materialize
SQL on Streams of Data

 Materialize

 Timely Dataflow

Differential

—- Aggregate the results of joins
SELECT input3.attr, SUM(val2), MAX(val3)
FROM input1, input2, input3
WHERE input1.fkey2 = input2.key
 AND input1.fkey3 = input3.key
GROUP BY input3.attr

// differential dataflow program
input1.join(input2, ...)
 .join(input3, ...)
 .reduce(...)

input1 join join reduce

input2 input3

Timely Dataflow
An OS for streaming dataflows

input1 join join reduce

input2 input3

Worker 0Provides abstractions for

- Fibers (operators)

- Communication (channels)

- Coordination (timestamps)

- Scheduling (cooperative)

Relevant here

- Operators are sharded over all workers.

- Timestamps may be partially ordered.

Can multiplex millions of operators.

Differential Dataflow
IVM for Data-Parallel Computation

Streams represent CDC info:

records: (data,time,diff)

Traditional data-parallel operators:

Map, Filter, Reduce, Join, +

Operators maintain as output the

correct answer for their operator

mapped over the input.

input1 join join reduce

input2 input3

The Reduce CDC output accumulates

at each time to the correct results for

the query on the inputs at that time.

Record Integer
Logical Timechange-data capture

reduce

join

input1

Differential Dataflow
IVM for Data-Parallel Computation

Some non-traditional operators:

Iterate, + mutual recursion

Arrange : “index build”

Arrangements:

A multi-version index over CDC contents.

Presents as both a stream, and an index.

Allows replay, index sharing.

Their main “verb” is to remove historical distinctions: logical compaction.

join join

input2 input3

input1 reduce

very important!

Standard SQL on Streaming Data
The basis for modern streaming infrastructure

You can just write SQL against streams of data.

The language isn't new, but what you can do is.

Tasks that required custom streaming systems

can now be done in idiomatic SQL fragments.

-- Aggregations over
-- stream of events
CREATE VIEW bids AS
SELECT
 item,
 hour,
 max(bid)
FROM
 offers
GROUP BY
 item, hour

new!

Ex: the SQL query to the right aggregates data.

It works great when applied to streams of data.

Unbounded streams, too big to warehouse.

Manage Consistent Caches
Trust SQL to define and maintain cached data

Data infrastructure connects components by
their function: streams, microservices, caches.

Consistency among them is a continual pain.

-- Create and cache
-- SQL query results
CREATE VIEW value AS
SELECT
 item,
 hour,
 ...

CREATE INDEX ON value;

new!

Ex: SQL gives you the ability to define compute,

index the results, all maintained consistently.
Even for streams of changing data.

Windows over Temporal Data
Use SQL to indicate how your data relate to time

Streams of data often focus on recent events.

Stream processors often require "windows",

where you only act on time slices of data.

-- Subset data by time
CREATE VIEW bids AS
SELECT
 o.item,
 o.bid
FROM
 offers o
WHERE
 now() < o.expires;

new!

Ex: You can use a WHERE clause in your SQL

to relate your data to time. It tells the system
when it should introduce and retire your data.

Building Applications
The magic of LATERAL joins

Many users of SQL + streams are
building “applications”.

Queries come and go often.

Have bound parameters.

-- Respond to queries updates.
CREATE VIEW top_3s AS
SELECT queries.id, name
FROM
 queries,
 LATERAL (
 SELECT name, pop
 FROM cities
 WHERE state = queries.state
 ORDER BY pop
 DESC LIMIT 3
);

Arbitrary correlated subquery
~ Streamed prepared statements.

new!

Features & Challenges
SQL means doing things correctly

All queries need to be dataflow
 SQL92 hard stuff: subqueries, order by/limit, case statements

 Includes group by min/max which get some dataflow magic.

Control-flow interruption is challenging

 Run-time errors, exceptions, conditional evaluation.

Optimization is fundamentally different
 Execution time isn’t the key metric any more.

 Memory footprint, throughput are more important.

Standard SQL is expressive enough for
streaming data infrastructure tasks.

Standard SQL is expressive enough for
streaming data infrastructure tasks.

Materialize
SQL92 : Postgres/pgwire compatible, read-replica look and feel.

Scalable (from one thread, and up), high-throughput, low-latency.

“Consistency preserving”: respect transactions from source data.

https://materialize.com : downloads, docs, demos

https://github.com/materializeinc/materialize/

https://github.com/TimelyDataflow/

mcsherry@materialize.com

https://materialize.com
https://github.com/materializeinc/materialize
https://github.com/TimelyDataflow/
mailto:mcsherry@materialize.com

