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– Allows predicate pushdown select * from T where S=‘no’
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Unique Self-aligned String Region (USSR)

• Dictionary Decompression in table Scan:

– Inserts (the most useful) dictionary codes into the USSR

– Setup a translation array for dictionary codes to USSR codes
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Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR

Tim Gubner, Viktor Leis and Peter Boncz, ICDE 2020 (Best Paper Award)



Optimistic Splitting

• Reduce the size of the Hash Table (fewer cache misses!):

– Store small codes (e.g. 16-bits, instead of 64-bits pointers)

– Non-USSR values are exceptions, in a cold area 
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USSR inner Workings

• Gather a global dictionary on-the-fly only valid for the query

• A small (cache-resident) area: only the most useful data

– The area has a special property: it is a self-aligned memory pointer

• All the pointers into it start the same (have the same bit prefix)

• USSR strings are recognizable quickly by their pointer

• Fast linear hash table for very quick inserts of new strings on-the-fly

0x10110101110101010101

0x10110101111000000000

45bits         19bits 

prefix (512Kb)
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USSR inner workings

• Gather a global dictionary on-the-fly

• A small (cache-resident) area: only the most useful data

– The area has a special property: it is a self-aligned memory pointer

– The strings in the USSR are aligned to eg 8 byte multiples

• precompute the hash (length is part of it), store it before the pointer 

• you can identify each USSR string by a small slot number (16 bits)

0 1 2 3 4

5 6 7 8

Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR

Tim Gubner, Viktor Leis and Peter Boncz, ICDE 2020 (Best Paper Award)
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• Heavy-weight/general-purpose Compression

– Lempel-Zipf plus possibly entropy coding

– Zip, gzip, snappy, LZ4, zstd, …
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String Compression in a DBMS

• Dictionary Compression

– Whole string becomes 1 code, points into a dictionary D

– works well if there are (relatively) few unique strings

• Heavy-weight/general-purpose Compression

– Lempel-Zipf plus possibly entropy coding

– Zip, gzip, snappy, LZ4, zstd, …

– Block-based decompression

• must decompress (all=) unneeded values in scan

• cannot be leveraged in hash tables, sorting, network shuffles

• FSST targets compression of many small textual strings
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FSST: Fast Static Symbol Table string compression

• Encode strings as a sequence of bytes, where each byte [0,254] is a

– CODE

• Each code stands for a 1-8 byte

– SYMBOL

• Byte 255 is special code marking

– EXCEPTION

followed by 1 uncompressed byte

Closest existing scheme is RePair, but is >100x slower than FSST (both ways)  

Small symbol table(s): 

RAM: 2.2KB, 

disk/network: ~500B

FSST: Fast Random Access String Compression

Peter Boncz, Viktor Leis and Thomas Neumann, PVLDB 2020



FSST bottom-up symbol table construction

• Evolutionary-style algorithm

• Starts with empty symbol table, uses 5 iterations:

– We encode (a sample of) the plaintext with the current symbol table

• We count the occurrence of each symbol

• We count the occurrence of each two subsequent symbols

– We also count single byte(-extension) frequencies, even if 

these are not symbols. For bootstrap and robustness.

– Two subsequent symbols (or byte-extensions) generate a new 

concatenated symbol

– We compute the gain (length*freq) of all bytes, old symbols and 

concatenated symbols and insert the 255 best in the new symbol table 



FSST Compression in a DBMS
• Dictionary Compression

– column (green) contains dictionary codes

– dictionary can be FSST compressed (smaller)

– no decompression on scan; random access possible

• FSST Compression

– column (brown) contains offsets in string segment

– eg 64KB block (self-aligned in RAM) starts with symbol table

– vectors contain pointers into block

– no decompression on scan; random access possible
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Datasets & Queries 
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Introducing: Public BI Benchmark

We downloaded the 50 biggest 

Tableau Public Workbooks

• extracted data + (implicit) queries 

• removed Tableau/Hyper-specific SQL

Get it from the CWI Database Architectures (DA) github:

github.com/cwida/public_bi_benchmark

https://github.com/cwida/public_bi_benchmark
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A look at real BI user data

• Dirty Data (exceptions, errors)

• Empty/missing values that are not null (empty quotes, whitespace) 

• Leading/trailing whitespace (fillers)

• Wrong typed: eg numbers and dates stored in VARCHAR columns

• Composed strings from different types+distributions (eg emails, urls)

• Correlations between columns, or even repeated columns



Suboptimal Data Representations

• Negative effects

– Data is much larger than needs to be

• verbose strings, correlation=repetition, prevented dictionary compression

– Queries take more time than they would need

• expensive string processing, expensive casts, no predicate push-down

• “Users are doing a bad job” ➔ “should fix their data and schema”

– This is not going to happen! End-users not even interested.

– Move to cloud ➔ less DBA attention

➔ systems should automatically compensate for suboptimal data

White-Box Compression one of the answers 

• smaller data, more efficient query processing



White-Box Compression

• Configurable, data-dependent, compression schemes

– Block or row-group header describes decompression function

• Some Research Questions this raises:

– What could these functions look like? 

– How does the system learn these functions during compression?

– How much will compression rate improve?

– How to exploit these functions in query optimization and execution?

– How can a system quickly parse and execute such functions?

F(..)

White-box Compression: Learning and Exploiting Compact Table Representations

Bogdan Ghita,Diego Tome, Peter Boncz CIDR 2020





Less Storage + 

Better Compression











Summary

• USSR string compression: global delta-compression on-the fly

– Transforms string operations into integer operations 

– Smaller & faster hash tables (joins, aggregates) – “optimistic splitting”

• FSST string compression: makes strings ~2x shorter

– Allows random-access  ➔ predicate pushdown + compressed execution

– Faster decompression and better ratios than LZ4 + snappy!!

– MIT licensed, code, paper + replication package github.com/cwida/fsst

– System-architectures challenge: managing multiple symbol tables in-flight

• White-box compression learns better table representations

BI users create poorly shaped datasets, likely won’t change

– smaller storage (better datatypes, less redundancy)

– compression expressions are learned from the data!

– Lot’s of angles of research here (it is a learning problem!)

Public BI Benchmark github.com/cwida/public_bi_benchmark

https://github.com/cwida/public_bi_benchmark
https://github.com/cwida/public_bi_benchmark

