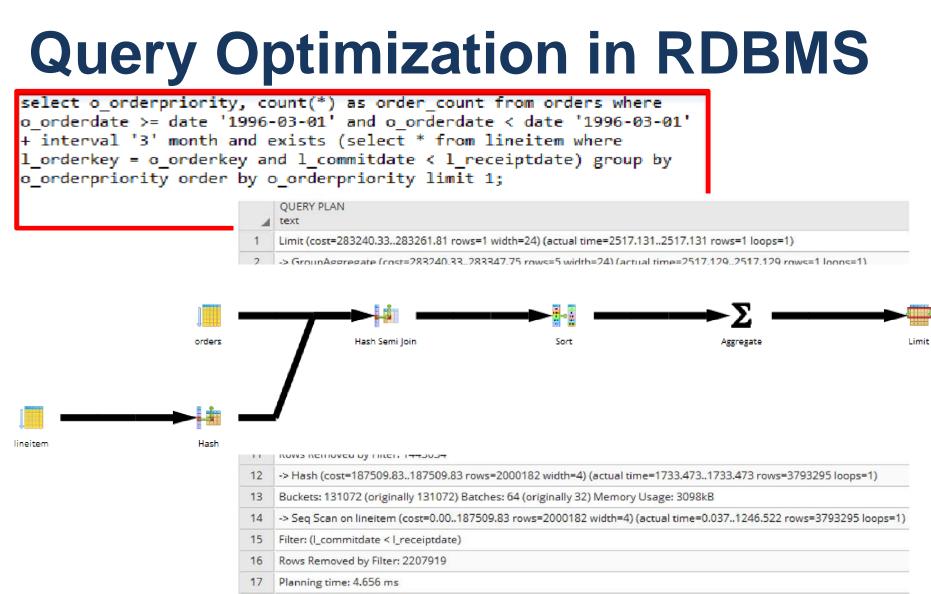


TED-Learn: Towards Technology-Enabled Database Education

Sourav S Bhowmick School of Computer Science & Engg Nanyang Technological Univ Singapore



18 Execution time: 2517.741 ms

Circa 2017

Student: I've been trying to understand the QEPs in X but it's really hard to follow....the descriptions are very different from what we learn from textbooks and lecture slides 🙁

Me: Yeah! DBMS vendors use vendor-specific implementation and language. You may refer to their manuals for details...

Student: It's boring to read manuals! In any case, for different DBMS I have to peruse different manuals...it's such a waste of time!

Me: Well, existing RDBMS are designed primarily for enterprises and not for students.... 😳

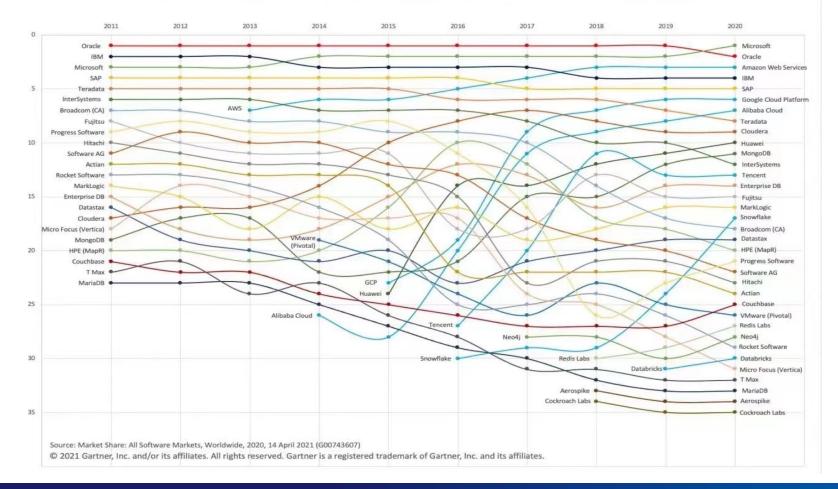
Student: Can you please make things easy for us to learn? I am really struggling to understand query plans....

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Hit Like A Brick Through the Window

Database Research for Enterprises

Gartner DBMS Market Share Ranks: 2011-2020



Can we describe a QEP using natural language to enhance DB education?

Juxtapose Ideas That Often Don't Go Together

NL :	How Much is Mark Zuckerberg's salary?
SQ :	SELECT Q D
	FROM given table
	WHERE (G (MAKE)

https://towardsdatascience.com/text-to-sql-learning-to-query-tables-with-natural-language-7d714e60a70d

Juxtapose Ideas That Often Don't Go Together

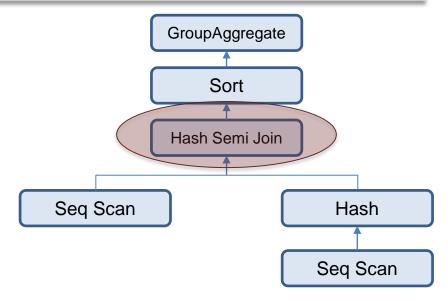
Enter SQL Query: Success!	Query Plan in English: View Plan
+ interval '3' month and exists (select * from lineitem where 1_orderkey = o_orderkey and 1_commitdate < 1_receiptdate) group by o_orderpriority order by o_orderpriority limit 1;	The query is executed as follow. Step 1, perform sequential scan on table orders and filtering on (o_orderdate >= '1996-03-01'::date) AND (o_orderdate < '1996-06-01 00:00:00'::timestamp without time zone) to get intermediate table T1. Step 2, perform sequential scan on table lineitem and filtering on 1_commitdate < 1_receiptdate to get intermediate table T2. Step 3, hash table T2 and perform hash join on table T1 and table T2 under condition orders.o_orderkey = lineitem.l_orderkey to get intermediate table T3. Step 4, sort T3 and perform aggregate on table T3 with grouping on attribute orders.o_orderpriority to get intermediate table T4. Step 5, limit the result from table T4 to 1 record(s) to get the final result.

Overview of NEURON [SIGMOD 2019]

NEURON

- Rule-based natural language description
- Build on top of PostgreSQL

```
select o_orderpriority, count(*) as
order_count
from orders
where
     o_totalprice > 100
     and exists (
          select *
          from lineitem
          where
               l_orderkey = o_orderkey
               and l_extendedprice > 100
group by o_orderpriority
order by o_orderpriority;
```



RULE TEMPLATE

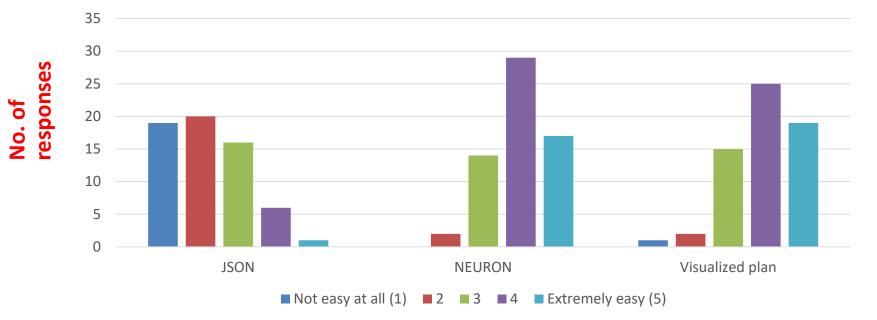
hash table <T> and perform hash semi join on table tablename and table <T> under condition (<C>) to get intermediate table <TN> .

NEURON v1.0

https://neuron.scse.ntu.edu.sg/#/

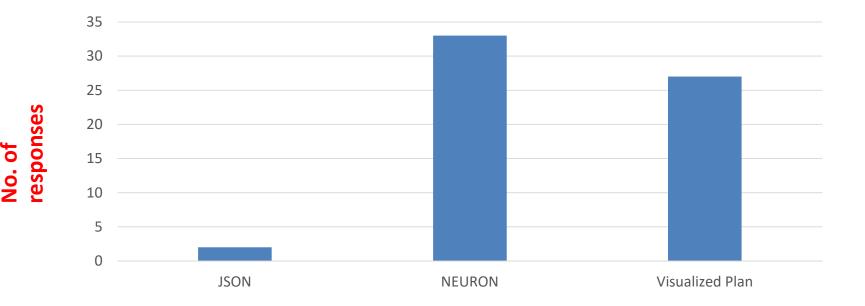
C ≜ neuron.scse.ntu.edu.sg/#/ * 😕 NEURON 03 Database schema SQL query Natural language description of QEP (current DB: TPCH) select * from orders where o_totalprice The query is executed as follow. > 100 Step 1, perform sequential scan on table o_orderkey orders and filtering on (o_totalprice > '100') (integer) to get the final result. o_custkey (integer) o_orderstatus (character) o totalprice (numeric) o orderdate (date) Visualize plan Submit Play Copy plan o_orderpriority (character) Question Answer o_clerk Question (character) How many rows are left after a certair o_shippriority (integer) Step o_comment (character Enter the step number varying) > customer

User Feedback: How easy is it to understand the query plan presented in various formats?



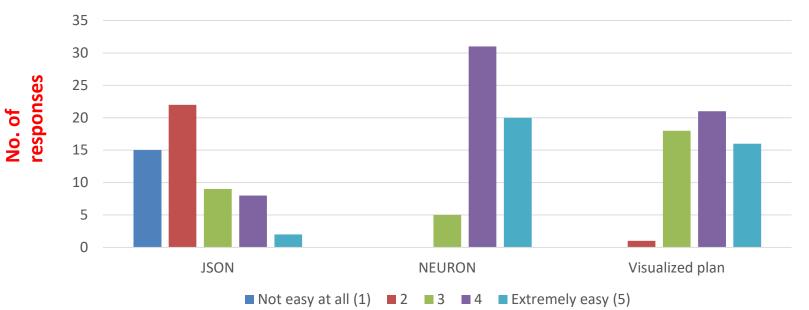
- 62 students volunteered for the survey (Oct 2019)
- NEURON is the easiest format (74.2%) to understand.
- Visualized plan (71%) is comparable with NEURON (74.2%).
- Majority (62.9%) of respondents found JSON format difficult to understand.

User Feedback: Which query plan format is most preferred?



- The survey participants preferred NEURON the most (53.2%)
- Very few participants (3%) chose JSON as the most preferred choice.

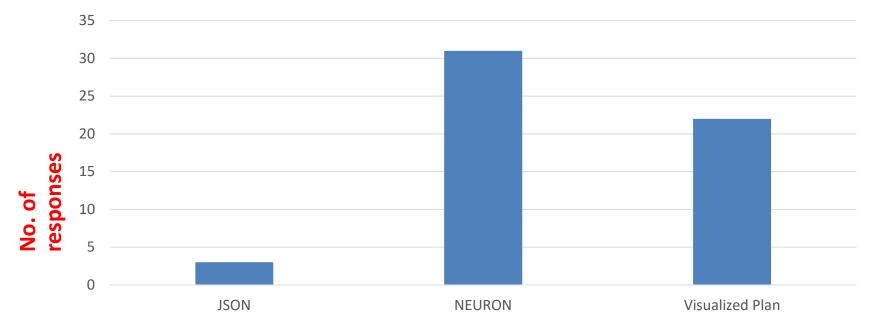
User Feedback: How easy is it to understand the query plan presented in various formats?



- 56 students volunteered for the survey (Oct 2020)
- NEURON is the easiest format (91.1%) to understand.
- Majority (66.1%) of respondents found JSON format difficult to understand.
- In term of ease of understanding (ranking of 4 or 5): NEURON (91.1%) > Visualized plan (66.1%) > JSON (17.9%)

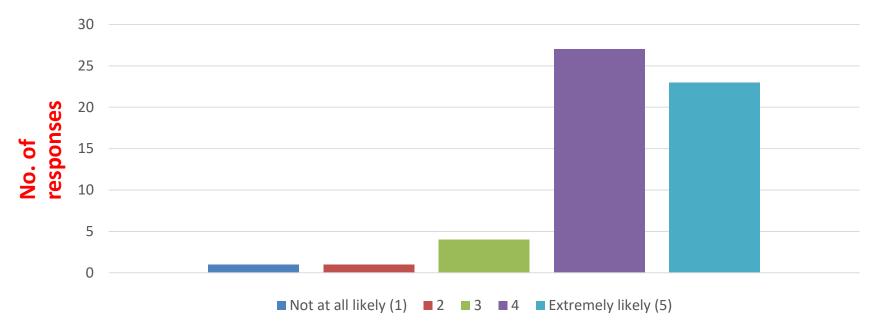
NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

User Feedback: Which query plan format is most preferred?



- The survey participants preferred NEURON the most (55.4%)
- Very few participants (5.4%) chose JSON as the most preferred choice.

User Feedback: How likely are you to recommend NEURON to a course mate?



• 89.3% of respondents are quite likely to recommend NEURON to a course mate.

User Feedback

"I use SQL Server. I can't use your tool! It only works on PostgreSQL!

> "After running few queries and reading the descriptions, I feel bored and skip sentences as the language is repetitive!

"The natural language translation can be improved to summarize complex conditions of the QEP

Issues

- How do we generalize NEURON across different RDBMS?
- How can we alleviate boredom?

Challenges

- Different RDBMS have physical operators with different names
- Rule-based algorithms naturally generates similar text descriptions.

LANTERN [SIGMOD 2021]

Key Idea

- Instead of mapping an entire QEP to its NL description, map the set of physical operators in a RDBMS to corresponding NL descriptions.
- Stitch them together to generate the description of a specific QEP.
- More manageable to label physical operators.
- Enables generalization to handle any application-specific database.
- Orthogonal to the complexities of SQL queries.

Two Variants

- RULE-LANTERN
- NEURAL-LANTERN

Towards Enhancing Database Education: Natural Language Generation Meets Query Execution Plans. Weiguo Wang, Sourav S Bhowmick, Hui Li, Siyuan Li, Shaq Joty, Peng Chen. In SIGMOD, 2021.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

RULE-LANTERN

Labeling Physical Operators

A declarative framework where a subject matter expert (SME) can create and manipulate the labels using a declarative language called POOL (Physical Operator Object Language).

POEM Data Model

- A simple and flexible graph model where all entities are objects.
- Each object -> a physical operator of a relational query engine.
- Objects are either atomic or complex having attribute-value pairs.
- source, name, alias, defn, desc, type, cond, and target.
- Values of all attributes are from the atomic type string.

RULE-LANTERN: POOL

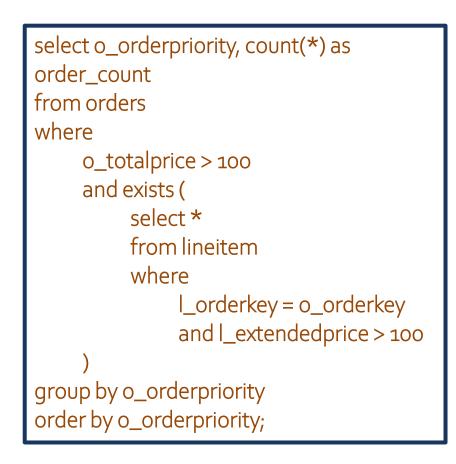
	CREATE POPERATOR hashjoin FOR pg (ALIAS = null,		Compose Operator		
(ALIAS = non, TYPE = 'binary', DEFN = null, DESC = 'perform hash join', COND = 'true', TARGET = null)		 Specify generation of an NL description template of an operator. Uses the desc, type, and cond attributes of operators to generate. 			
POperators(<u>o</u> PDesc(<u>oid, de</u>	<u>d</u> , source, name, alias, type <u>sc</u>)	, defn,cond, t	argetid)	POEM Store	
COMPOSE FROM	hash pg]	"hash \$l	R1\$"	
COMPOSE FROM	hash, hashjoin pg			R1\$ and perform hash \$R2\$ and \$R1\$ on	

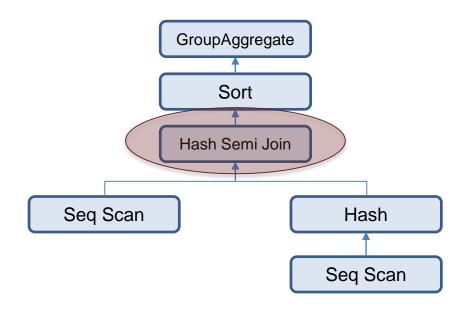
pg hashjoin.desc = 'perform hash join'

form hash join on \$R2\$ and \$R1\$ on condition \$cond\$".

USING

RULE-LANTERN Algorithm





RULE TEMPLATE

hash table <T> and perform hash semi join on table tablename and table <T> under condition (<C>) to get intermediate table <TN> .

User Feedback (Revisited)

"After running few queries and reading the descriptions, I feel bored and skip sentences as the language is repetitive!

NEURAL-LANTERN

Leverage DL

- Regard a QEP as an input language while the NL description as the output.
- Interpreting QEP into NL can be viewed as a machine translation task.

Challenges

- DL-based techniques need massive training sets of labeled examples to learn from.
- Prohibitively expensive as they demand database experts to translate thousands of QEPs.
- The platform needs to be generalizable and application domain-independent for ease of deployment and usage.

NEURAL-LANTERN: Training Data

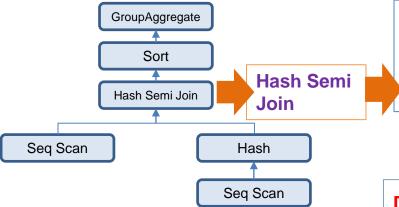
Training Data Generation

- We adopt Kipf et al. [CIDR 2019] to generate a set of SQL queries given a particular schema and database instance.
- A collection of QEPs corresponding to these queries.
- Each QEP is decomposed into a set of acts, each of which corresponds to a set of operators in an operator tree (subtree).
- For each act-> RULE-LANTERN to generate NL description.

Diversifying Text

- For each RULE-LANTERN result, we apply three state-of-the-art synonymous sentence generation tools and acquire a set of synonymous sentences.
- Remove duplicates and manually eliminate invalid sentences.

Example



Training Data Generation

RULE-LANTERN:

hash table <T> and perform hash semi join on table tablename and table <T> under condition (<C>) to get intermediate table <TN> .

Diversifying Translation:

- hash table <T> and hash semi enter under condition (<C>) on table tablename and table <T> to obtain intermediate table <TN> .
- hash table <T> and do a half hash join on table tablename and table <T> under condition (<C>) to get intermediate table <TN> .
- hash table <T> and perform hash semi join on table tablename and table <T> under condition (<C>) to get transitional table <TN> .

List of special tags used	in the output
Description	Example

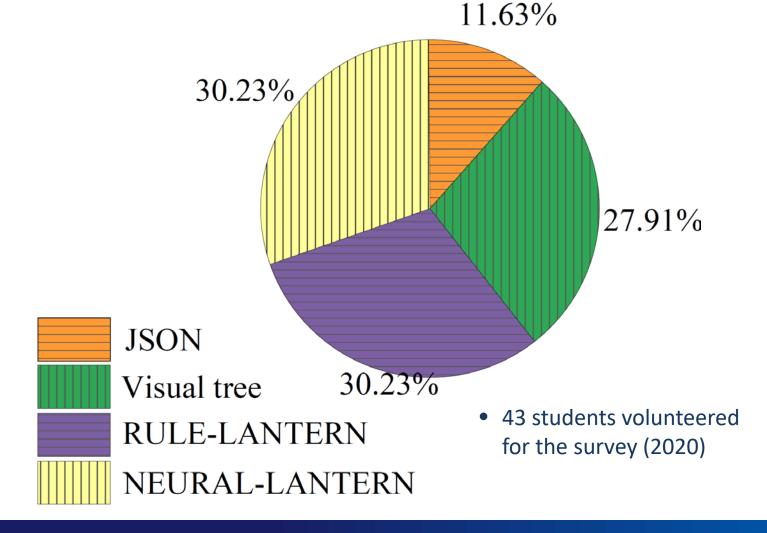
Tag	Description	Example		
<i></i>	indexed column name			
<f></f>	filtering condition	c_mktsegment = 'BUILDING'		
<c></c>	join condition	c_custkey = o_custkey		
<t></t>	an existing temporary table name			
<tn></tn>	new temporary table name			
<a>	column name for sort	order by revenue desc		
<g></g>	column name for groupby	group by <i>l_orderkey</i>		

NEURAL-LANTERN: Translation Model

QEP2Seq Model

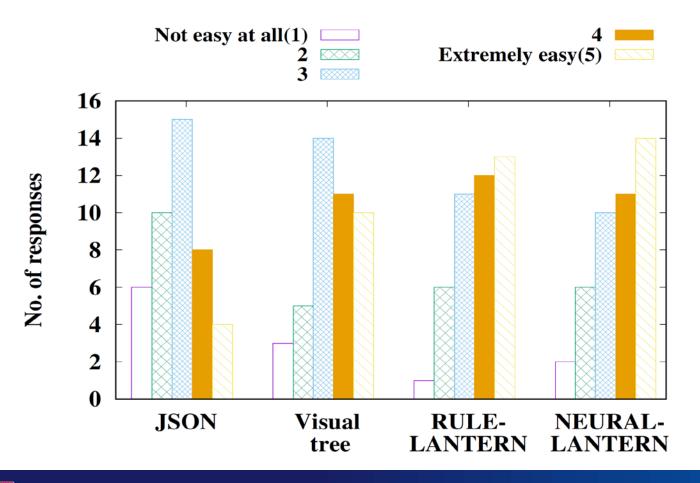
- Follows the Seq2Seq structure.
- The acts collection actCol is composed of a series of acts L_1, L_2, \ldots, L_n , each of which is derived from the QEP.
- The Encoder RNN encodes each word in *Li* into the corresponding hidden state h*t* using an LSTM layer
- We use an LSTM decoder with an attention mechanism to let the decoder focus on the relevant portion of the encoder while generating a token.
- We adopt both static (Word2Vec and GloVe) and contextual word embeddings (ELMo and BERT) in decoder.
- Training data: workloads in TPC-H (22 queries) and SDSS (71 queries)
- Apply trained model on IMDB (1000 SQL queries)
- Pre-trained word embeddings can reduce the validation set loss while improving validation set accuracy and alleviate overfitting problem.

User Feedback: Which query plan format is most preferred?



9

User Feedback: How easy is it to understand the query plan presented in various formats?



NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Impact of Boredom

Do learners feel bored?

- We presented a set of output generated by each approach in random order
- Asked the subjects to rate the degree of boredom (boredom index) they felt perusing these plans to understand QEPs using the Likert scale of 1-5

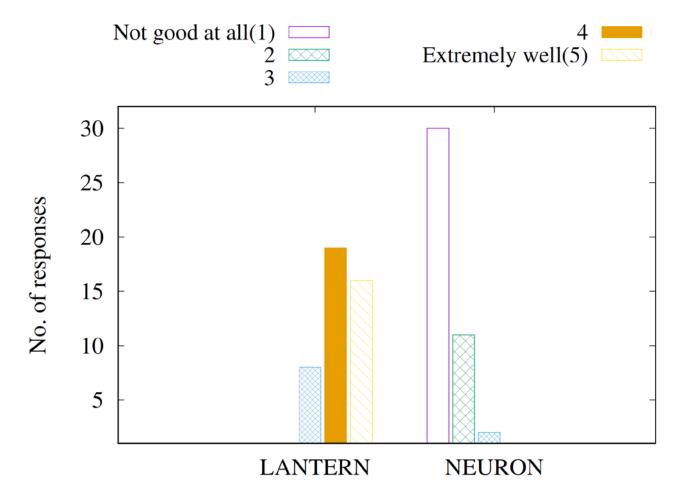
Method	Boredom index (not boring \rightarrow extremely boring)				
	1	2	3	4	5
RULE-LANTERN	2	7	19	10	5
NEURAL-LANTERN	6	11	22	3	1
NEURON	2	8	16	11	6
LANTERN	6	12	21	2	2

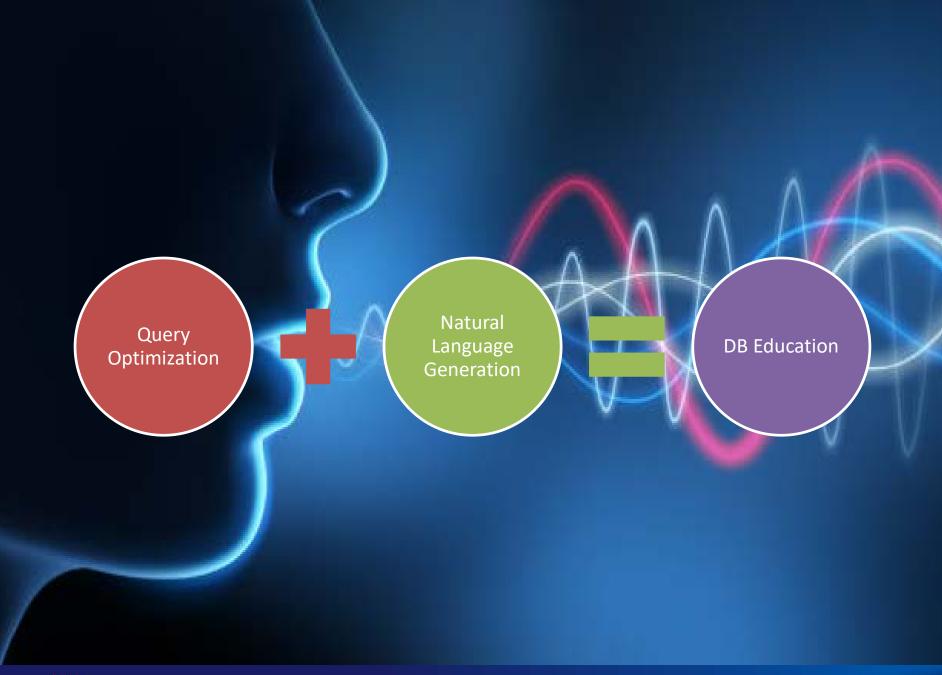
NEURON vs LANTERN

Integrate RULE-LANTERN and NEURAL-LANTERN

- Track (QEP, NL description) pairs viewed by each participants.
- By default, the NL description of each physical operator is generated using RULE-LANTERN.
- Whenever an operator appeared more than a pre-defined frequency threshold (i.e., 5) in total in different QEPs associated with a participant, NEURAL-LANTERN is invoked to generate the description for the operator.

User Feedback: LANTERN vs NEURON





NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Summary

Simple and Communicable

• Generating natural language descriptions of QEPs

Timely and Fundamental

- Lifelong learning is increasingly becoming a reality
- By fundamental we mean that the idea touches on something basic to humans in collective settings

Personally Relevant

• Education is personal!

Interesting Issues based on Feedbacks

How do we summarize the descriptions?

How can learners explore the impact of physical operators on a QEP?

How can learners converse with a query optimizer to aide learning?

DBMS Needs to Break Out from the Enterprise Jar

Acknowledgements

Hui Li, Xidian Univ, China

Shafiq Joty, NTU

Patricia Chen, Dept of Psychology, NUS

- Siyuan Liu, NTU
- Weiguo Wang, Xidian
- Peng Chen, Xidian
- Zheng Li, Xidian

• Student volunteers in NTU and Xidian

