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From Data Integration to Schema Matching

* Organizations gather heterogeneous data into data lakes

* Data scientists spend most of their time on capturing relevance
 Data Integration Problem: Relevant data sources are unlinked

* Need for Schema Matching

* (Semi-)Automated methods with the goal of finding links among
datasets

 E.g. Related columns among Tabular Data

4 June 2021 DSDSD



From Schema Matching to Dataset Discovery

4 = )
N /
Input Dataset Schema Matching in Data Lake

can be joined with

can be unioned with .

can borrow columns from

Use Matches towards specific goal

 Dataset Discovery is a critical task for organizing a data lake

* Navigate numerous data sources to find relationships for a given dataset

* Schema Matching is a core component of any modern dataset discovery

pipeline
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Schema Matching in research

* Abundance of matching
methods

* No comparison in 20
years

 No evaluation datasets
QOutdated metrics
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A missing link with Dataset Discovery literature

e Result: none of the
dataset discovery
methods (~last 10 years)
employ them!

* Dataset Discovery
methods typically
implement their own
matching methods
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Valentine to the rescue

Current limitations

©® No comparative study

© No specific relatedness
scenarios

© No evaluation datasets
® No open-sourced methods

© Tough/impossible
deployment for Dataset
Discovery
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Our contributions

? Most comprehensive
effectiveness/efficiency study
to date

? Relatedness scenarios
accustomed to Dataset
Discovery

» Dataset fabrication
2 6 SotA methods + a baseline

2 Easily deployed and
extensible
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Matching in Dataset Discovery

* Six categories of matchers are used:

Attribute Overlaps Value Overlaps Semantic Overlaps

* Valentine brings the best of schema matching

» Covers all matcher categories
« Sophisticated methods that employ several intuitions and techniques
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A new way of evaluating schema matching

Table 1

oora 1 1 1)

Table 2

« Ranked Matches serve better the needs of Dataset
Discovery

« Recall @ ground truth shows the quality of the
ranking a method returns rather than its ability to
filter out irrelevant matches

4 June 2021 DSDSD

Conventional Schema Matching Evaluation

Match Results Evaluation

Client <-> C_ID
Country <-> Cntr

Precision: 0.5
Recall: 1/3

Valentine's Novel Evaluation
Ranked Match Results
Client- C_ID: 0.85

Country - Cntr: 0.6/
PO - P_Code: 0.35

Evaluation

Recall @ ground truth: 1



Dataset Relatedness Scenarios

 Evaluate on dataset pairs that respect specific relatedness
semantics

Joinable or Semantically Joinable | Unionable or View-Unionable

i B B B B U Y B B S
T [C_otice| Head | Client | Street | POl Client | Street | PO |

J. Watts 2, Tea St. 39499 J. Watts 2, Tea St. 39499
J.Watts 2, TeaSt. | USA M USA 68346 B. Stan i e e
B.Mei 8, FlySt. | China : 1 T % ' S

China | 74742 J. Ki

:iiiiiiiii/“. = i i f 2 i f

Client L Street SEM C_Office Head C_Name | Addr | P_Cod | ddr|P_Code| C_ID |

J. Watt-s 2, Tea St. | US.A M States 3 68346 B. Sta-n B. Mei 8, F|y St. 34682 8, FIy St. 34682 C10012

B. Mei 8, F|y St. | China Chn l 74742 J. Ki Q. Man 3, Bay St. 35472 3 Bay St. 35472 (23672
7
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Dedicated Fabrication Process

* Fabricate dataset pairs that follow the relatedness scenarios

* Based on a source table create pairs by employing

« Horizontal/Vertical splits
* Noise injection in Schemata/Instances

(_ Unionable ) ((View-Unionable ) (_ Joinable ) ( Semantically-Joinable )
Horizontal Split Vertical Split Horizontal Split Vertical Split Horizontal Split Vertical Split Horizontal Split
Row Overlap Column Overlap Row Overlap Column Overlap Row Overlap Column Overlap Row Overlap
[0%, 50%, 100%] [30%, 50%, 70%] 0% [1,30%, 50%, 70%] 50% (1, 30%, 50%, 70%)] 50/

/N 7\ 7\
/‘ b\. %) @ /[ J\[ HREGRGRGOEGRE [J U

Verbatim Verbatim (NS) Noisy Schemata (NI) Noisy Instances

Schemata Instances
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Valentine’s Schema Matching Methods

« Consolidates the best of schema matching efforts (last 20
years)

e Schema-based
* Cupid - Similarity Flooding - COMA
* Instance-based

e Distribution-based - COMA instance
 Baseline based on approximate instance set overlaps

* Hybrid
* SemProp - EmbDI

4 June 2021 DSDSD
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Findings — Schema Based Methods

Unionable View-Unionable Joinable Semantically-Joinable

T A~ SO S S S B~ A
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* Noisy schemata critically affect effectiveness and consistency

* Schema information (e.g. data types) and contextual
information not insightful
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Findings — Instance Based Methods

Unionable View-Unionable Joinable Semantically-Joinable
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 View unionable and semantically-joinable scenarios are
considerably harder

* High skew in effectiveness for all methods/scenarios
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Findings — Hybrid Methods

Unionable View-Unionable Joinable Semantically-Joinable

1.0 ‘ T — .
cs% T | Yo
NS =
»E06 v} ) O D O
“(6 T
=304 \D (o No ¢
O = o

 — ﬁ : %
0.0 AN L ' 1 & 1
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] Noisy Instances/Schemata EIE Verbatim Instances/Schemata EDI - EmbDI SP - SemProp

 Low effectiveness and high skew

* Embeddings - pretrained or local ones - are still not a
trustworthy standalone tool for matching
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Findings on ING Data

Cupid

Sim Flooding
COMA Schema
COMA Instance
Dist based

Baseline
EmbDI

0.71 0.5

0.36 0.44
0.79 0.12
0.79 0.14
0.86 0.88
0.79 0.62
0.71 0.23

* Distributions of values can bring helpful insights

* Schema-based methods have very low effectiveness

4 June 2021
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Efficiency Results

Cupid
Sim Flooding
COMA Schema

COMA Instance

Dist based
SemProp
Baseline

EmbDI

9.64
7.09
1.67

318.07

71.16
735.25
522.94

4817.87

* Schema-based considerably faster

* Training embeddings can be very inefficient

4 June 2021
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Lessons Learned

* There is no matching method that is consistently the best

* Embeddings should only be used together with other
techniques

« Parameterization can be a daunting task - availability of
ground truth can help

* Baselines can perform well
* Humans should be incorporated

* Schema Matching doesn’t scale - expensive to deploy
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Valentine in Action [Demo in VLDB 2021]

© Schema Matching systems come with an outdated GUI
® No deployment at scale - deployment in a data lake
© No easy-to-use and complete evaluation system available

2 Offer Valentine's utilities through a user-friendly GUI
» Offer a scenario-driven dataset fabricator
2 Enable users to conduct extensive experiments

2 Enable users to deploy Valentine for holistic matching in a
data lake

4 June 2021 DSDSD
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Select Fabrication Variant(s)
a)
Joinable [CJ unionable View Unionable [C] semantically Joinable
Number of pairs
Number of pairs Number of pairs 50 Number of pairs
Include: Include: Include:
felect algorithms to run
Noisy schemata [J Noisy instances [J Noisy instances O b e S
Select fabricated dataset
Coma Cupld Distribution Based Jaccard Levenshtein
[C] Verbatim instances [J Noisy schemata Noisy schemata Ol
miller_j_vu_150 [) Default Params [ Default Params Default Params Default Params
Verbatim schemata [C] Verbatim instances [C] Verbatim instances Ol
Strategy joal_w_struct
Select a file: COMA_OPT 0.1,0.25,0.5
[ Verbatim schemata [ Verbatim schemata Upload your own dataset glniiarity Flooding EmbDy
Name of the dataset group max_ w_struct =
1 0.1:0.1:0.6 Default Params

th_accept

Unionable View-Unionable Joinable Semantically-Joinable 0.7

th_high

Recall at size of
ground truth
o (=] o o
» o

th_low

o
o N

th_ns
BN Noisy Schemata CU - Cupid SF - SimilarityFlooding COS - COMA-Schema

Unionable View-Unionable Joinable Semantically-Joinable
/ / /
D

£37) Noisy Instances BN Verbatim Instances DB - DistributionBased JL - JaccardLevenMatcher COI - COMA-Instance

Recall at size of
ground truth
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Y,

select algorithms to run

Select Tables a) 1
Coma Cupld

Distribution Based
v O Musicians_1 '
Default Params | Default Params [ Default Params
—-— s : ;
111 Musicians_j_1.csv Phase 1 threshold:

\ .

[C] §u§ musicians_j 2.csv
Phase 2 threshold: ‘

> Q Musicians_2

quantiles
> O ? Musicians_3 —
> O Q Musicians_4

NEW SOURCE

b)

[] Jaccard Levenshtein

Default

[) Similarity Flooding

[ EmbDI

Default

Params

Params

Job: 75604128-11ef-47af-818a-6d0bce0f7afd

Algorithm: Cupid

SHOW/HIDE MATCHES

Source Column

musicians_| 1 familyNamelLabel

musicians_s|_1.musicianLabel

musicians_s| 1. fatherLabel

musicians_sj_1.motherLabel

musicians_| 1.residencelabel

musicians_| 1.famidyNamel abel

musicians_j 1.familyNamelabel

musicians | 1.musician

Target Column

musicians_s|_ 2 familyName

musicians_s| 2 musiclanName

musicians_s|_2.fatherName

musicians_s| 2 motherName

musicians_s| 2 residence

musicians_sj 1.genderLabel

musicians_sj_1.geniusNamelabel

musicians si 2 musicianName

Similarity

- m e

4 June 2021
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Lessons Learned: Matching in a Data Lake

* Deploying matching in a data lake is a daunting task

* Resource expensive
* All-pairs comparison is inefficient / SOTA methods difficult to scale

« Automated matching techniques are not always reliable
* They work under specific assumptions about the data
« Such assumptions may not apply in big data repositories
 Human refinement is necessary

4 June 2021 DSDSD
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Prospects in Large-scale Matching

* Incorporate human knowledge in development of methods

e Instead of using humans in refinement, use them in the beginning
* There always exists partial knowledge of the underlying data

* Build robust models
* Model human knowledge in order to leverage modern DL methods
« Can generalize well

4 June 2021 DSDSD
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Visit https://delftdata.github.io/valentine/ !

@ Links to our GitHub Repos

« Code for deployment
e Code for dataset fabrication
* In detail experimental results

@ All fabricated dataset pairs used in the paper

® Updates regarding Valentine

4 June 2021 DSDSD
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