
Laurens Kuiper

Fastest Table Sort in the
West - Redesigning

DuckDB’s Sort

Introduction

⬤⫐ One of the most well-studied problems in CS

⬤⫐ Cache-efficiency

⬤⫐ Worst-case analysis

⬤⫐ Parallelism

⬤⫐ …

⬤⫐ … Arrays!

Sorting

Introduction

⬤⫐ Use cases:

⬤⫐ ORDER BY

⬤⫐ WINDOW

⬤⫐ Sort-Merge Join

⬤⫐ Inequality Join

⬤⫐ …

Sorting Relational Data

Introduction

⬤⫐ Performance challenges

⬤⫐ Multiple order clauses

⬤⫐ Different types

⬤⫐ Columns vs. Rows

⬤⫐ …

Sorting Relational Data

Introduction

⬤⫐ We distinguish two column types:

⬤⫐ Both key and payload columns must be ordered!

SELECT *
FROM customer
ORDER BY
 c_birth_country DESC,

 c_birth_year ASC;

Payload columns

Key columns

Sorting Relational Data

Introduction

⬤⫐ Dominated by

⬤⫐ Comparing values

⬤⫐ Moving data

⬤⫐ This presentation: Comparing key column values

⬤⫐ Focus: Columnar representation

The Cost of Sorting

Sorting Relational Data

⬤⫐ Sorting relational data: row-wise operation

⬤⫐ How to implement comparison for columns?

⬤⫐ Need to sort indices:

Comparing Values

bool Compare(columns, l_row_id, r_row_id):
 for col : columns:

 if col[l_row_id] != col[r_row_id]:

 return col[l_row_id] < col[r_row_id];

 return false;

Branch Pointer chasing

Comparing Values

⬤⫐ Solution: pack key columns into a row

⬤⫐ No chasing pointers by index

⬤⫐ Sort data directly

⬤⫐ Better locality

⬤⫐ Values in row are co-located with each other

Pointer Chasing

...c0 c1 ckid ...

c0 c1 . . . ck

c0 c1 . . . ck

id

id

c0 c1 . . . ck id

Comparing Values

⬤⫐ Simulated experiment:

⬤⫐ 210 to 224 tuples

⬤⫐ 1 to 8 key columns (uint32_t)

⬤⫐ Data distribution: many ties

⬤⫐ Measure relative runtime difference

⬤⫐ Hardware: 2020 MacBook Pro (M1)

Pointer Chasing

Comparing Values

⬤⫐ Sorting row data vs. column data

⬤⫐ Time includes column to row transformation!

Pointer Chasing

row 10%
slower

row 3x
faster

Comparing Values

⬤⫐ Comparison has many branches:

⬤⫐ If c_birth_country equal, compare c_birth_year

⬤⫐ ASC/DESC

⬤⫐ NULLS FIRST/LAST

SELECT *
FROM customer
ORDER BY
 c_birth_country DESC,

 c_birth_year ASC;

Branch Prediction

Comparing Values

⬤⫐ Encode keys as binary string

⬤⫐ Eliminates branch predictions from comparison

Key Normalization

birth country birth year
NETHERLANDS 1992
GERMANY 1924

birth country birth year
78 69 84 72 69 82 76 65 78 68 83 0 200 7 0 0
71 69 82 77 65 78 89 0 132 7 0 0

binary string
177 186 171 183 186 173 179 190 177 187 172 255 128 0 7 200
184 186 173 178 190 177 166 255 255 255 255 255 128 0 7 132

(a)

(b)

(c)

SELECT *
FROM customer
ORDER BY
 c_birth_country DESC,

 c_birth_year ASC;

Comparing Values

⬤⫐ Sorting normalized row data vs. row data

⬤⫐ Time includes creating the normalized keys!

Key Normalization

normalized
2.9x faster

normalized
40% slower

Sorting Relational Data

⬤⫐ Comparing rows: Eliminates pointer chasing

⬤⫐ Key normalization: Eliminates branch predictions

⬤⫐ Both optimizations are almost always worth it

Comparing Values: Summary

Sorting Relational Data

⬤⫐ Key normalization enables byte-by-byte Radix Sort

⬤⫐ Key size 4 bytes: LSD

⬤⫐ Key size 4 bytes: MSD

⬤⫐ Insertion sort

≤

>

Sorting Algorithm

Sorting Algorithm

⬤⫐ Looks pretty bad for Radix Sort …

⬤⫐ … or does it?

Radix Sort vs. Quicksort

Sorting Relational Data

⬤⫐ Simulation knows key size at compile time

⬤⫐ In practice we don’t

⬤⫐ How much does pdqsort benefit from this?

Radix Sort vs. Quicksort

Sorting Relational Data

⬤⫐ Now with dynamic comparison:

⬤⫐ Still cumbersome: many struct definitions

Radix Sort vs. Quicksort

Sorting Relational Data

⬤⫐ To make quicksort efficient we could:

⬤⫐ Create a lot of templated structs/functions

⬤⫐ … and blow up our binary size :(

⬤⫐ At this point it becomes an arms race

Radix Sort vs. Quicksort

Sorting Relational Data

⬤⫐ Performance depends on key size / distribution

⬤⫐ Quicksort needs compile-time optimization

⬤⫐ Radix Sort does not

⬤⫐ Efficient quicksort is possible for relational data

⬤⫐ Comes at a cost

⬤⫐ … or for free for JIT systems

Sorting Algorithm: Summary

Sorting Relational Data

⬤⫐ Relational sorting benchmark using TPC-DS

⬤⫐ catalog_sales

⬤⫐ 34 columns

⬤⫐ SF10: 14.4M rows

⬤⫐ SF100: 144M rows

⬤⫐ Ordered by cs_quantity, cs_item_sk

End to end performance?

Experimental Results

⬤⫐ Increasing number of payload columns

⬤⫐ Note: 3GB/s SSD write speed

TPC-DS catalog_sales

Sorting Relational Data

⬤⫐ Sorting relational data efficiently is challenging

⬤⫐ Performance is impacted by:

⬤⫐ Random access

⬤⫐ Branch predictions

⬤⫐ We can mitigate these problems with:

⬤⫐ Row layout in memory

⬤⫐ Key normalization

⬤⫐ Trade-off between Radix Sort and Quicksort

Wrapping Up

Laurens Kuiper

Fastest Table Sort in the
West - Redesigning

DuckDB’s Sort

Comparing Values

⬤⫐ Strings:

⬤⫐ Encode a prefix

⬤⫐ Collation can be encoded

⬤⫐ NULL values:

⬤⫐ Encode using additional byte

Key Normalization

Experimental Results

⬤⫐ 10-100M random integers

⬤⫐ … Actual relational data in the next experiment!

Random Integers

Sorting Relational Data

⬤⫐ DuckDB uses Morsel-Driven Parallelism

⬤⫐ Threads collect data locally

⬤⫐ Each thread sorts its own data

⬤⫐ Merge Sort needed for final result!

Parallelism

Parallelism

⬤⫐ Parallelized using Merge Path

Merge Sort

Image by Oded Green et al.

Sorting in DuckDB

⬤⫐ Serialize payload in row format

⬤⫐ Buffer-managed blocks

External Sorting

intA stringA intB stringB

37

37

42

42

66

66

0x0001 0x0002

0x0003 0x0004

0x0005 0x0006

DuckDBLabs

pointer

swizzling

goose

CWI

radix

pointer

0x0001

0x0003

0x0005

Row Layout

Row Heap

Sorting in DuckDB

⬤⫐ Heap also uses rows

⬤⫐ Swizzle pointer -> offset

External Sorting

intA stringA intB stringB

37

37

42

42

66

66

0 5

0 3

0 10

DuckDBLabs

pointer

swizzling

goose

CWI

radix

offset

0

12

24

Row Layout

Row Heap

Sorting in DuckDB

⬤⫐ External sorting is made possible because of

⬤⫐ merge sort

⬤⫐ buffer manager

⬤⫐ pointer swizzling

⬤⫐ Modern hardware helps too!

External Sorting

