
Building Advanced Analytics
from Low-Level Plan Operators
André Kohn, Viktor Leis, Thomas Neumann
Technical University Munich
SIGMOD 2021

Motivation

Π

T

SR

for (a,b) in R:
ht1.insert(a,b)

for (c,d) in S:
for (a,b) in ht1.lookup(d):

ht2.insert(c,(a,b))

for e in T:
for (c,(a,b)) in ht2.lookup(e):

print(a,b,c)

SELECT a, b, c FROM R, S, T WHERE a = d AND c = e

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 2

Motivation

Π

Γ

R

for (a,b,c,d) in R:
partitions.insert(d,(a,b))
agg1.preagg ((d,c),())

partitions.shuffle ()
partitions.sort((d,a))
for (md,sum ,cnt) in partitions:

ht2[d] = (md,sum ,cnt ,NULL)
for (d,c) in agg1.merge ():

agg2.preagg(d, sum(c))
for (d,sumc) in agg2.merge ():

ht2[d][3] = sumc

for (d,md,sum ,cnt ,sumc) in ht2:
print(d,md,sum/cnt ,sumc)

SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 3

Motivation
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Γ

Γ

Π

Γ

R

MEDIAN
ARG KEY ORD

SUM
ARG KEY ORD

COUNT
ARG KEY ORD

ANY
ARG KEY ORD

ANY
ARG KEY ORD

SUM
ARG KEY ORD/

a b c d

SINK

Π

R

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

R

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 4

Motivation
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Γ

Γ

Π

Γ

R

MEDIAN
ARG KEY ORD

SUM
ARG KEY ORD

COUNT
ARG KEY ORD

ANY
ARG KEY ORD

ANY
ARG KEY ORD

SUM
ARG KEY ORD/

a b c d

SINK

Π

R

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

R

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 4

Low-Level Plan Operators

Problem:

• Relational Algebra favors monolithic aggregation logic.

• Set semantics prevent modular aggregation operators.

• Query plans should be DAGs rather than trees.

Solution:

• Introduce Low-Level-Plan Operators that consume
and produce tuples with Physical Properties.

• Tuples can be streamed. (in , out)

• Tuples can be materialized. (in , out)

• Tuples can be partitioned and ordered.

Operator In Out Semantics

Tr
an

sf
or

m

PARTITION Hash-partitions input
SORT Sorts hash partitions
MERGE Merges hash partitions
COMBINE Joins unique groups
SCAN Scans hash partitions

C
om

pu
te HASHAGG Aggregates hash-based

ORDAGG Aggregates sort-based
WINDOW Aggregates windows

* Traditional operators

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 5

From Tree To DAG
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Γ
Π

Γ

R

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

R

STREAM
BUFFER

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 6

From Tree To DAG
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Π

Γ

R

SOURCE

PARTITION(d)

SORT(d,a)

SUM(b)MEDIAN(a) COUNT(b)

ANY(c) ANY(d)

COMBINE(d,c)COMBINE(d,c)

SUM(DISTINCT c)

COMBINE(d)

SCAN

SINK

A

A

B B

B

C

C

C

D

D

E

STREAM
BUFFER

A Add combine operators

B Compute aggregates
• Expand grouping sets
• Select aggregation order
• Select aggregation strategies

C Propagate buffers
• Add sorting operators
• Add partitioning operators
• Add scan operators

D Connect DAG
• Consume from source operator
• Produce for sink operator

E Optimize DAG
• Replace unbounded windows
• Remove redundant combines
• Select producer order
• Select buffer layouts
• Select sort modes

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 6

From Tree To DAG
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Π

Γ

R

SOURCE

PARTITION(d)

SORT(d,a)

SUM(b)MEDIAN(a) COUNT(b)

ANY(c) ANY(d)

COMBINE(d,c)COMBINE(d,c)

SUM(DISTINCT c)

COMBINE(d)

SCAN

SINK

A

A

B B

B

C

C

C

D

D

E

STREAM
BUFFER

A Add combine operators

B Compute aggregates
• Expand grouping sets
• Select aggregation order
• Select aggregation strategies

C Propagate buffers
• Add sorting operators
• Add partitioning operators
• Add scan operators

D Connect DAG
• Consume from source operator
• Produce for sink operator

E Optimize DAG
• Replace unbounded windows
• Remove redundant combines
• Select producer order
• Select buffer layouts
• Select sort modes

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 6

From Tree To DAG
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Π

Γ

R

SOURCE

PARTITION(d)

SORT(d,a)

SUM(b)MEDIAN(a) COUNT(b)

ANY(c) ANY(d)

COMBINE(d,c)COMBINE(d,c)

SUM(DISTINCT c)

COMBINE(d)

SCAN

SINK

A

A

B B

B

C

C

C

D

D

E

STREAM
BUFFER

A Add combine operators

B Compute aggregates
• Expand grouping sets
• Select aggregation order
• Select aggregation strategies

C Propagate buffers
• Add sorting operators
• Add partitioning operators
• Add scan operators

D Connect DAG
• Consume from source operator
• Produce for sink operator

E Optimize DAG
• Replace unbounded windows
• Remove redundant combines
• Select producer order
• Select buffer layouts
• Select sort modes

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 6

From Tree To DAG
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Π

Γ

R

SOURCE

PARTITION(d)

SORT(d,a)

SUM(b)MEDIAN(a) COUNT(b)

ANY(c) ANY(d)

COMBINE(d,c)COMBINE(d,c)

SUM(DISTINCT c)

COMBINE(d)

SCAN

SINK

A

A

B B

B

C

C

C

D

D

E

STREAM
BUFFER

A Add combine operators

B Compute aggregates
• Expand grouping sets
• Select aggregation order
• Select aggregation strategies

C Propagate buffers
• Add sorting operators
• Add partitioning operators
• Add scan operators

D Connect DAG
• Consume from source operator
• Produce for sink operator

E Optimize DAG
• Replace unbounded windows
• Remove redundant combines
• Select producer order
• Select buffer layouts
• Select sort modes

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 6

From Tree To DAG
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Π

Γ

R

SOURCE

PARTITION(d)

SORT(d,a)

SUM(b)MEDIAN(a) COUNT(b)

ANY(c) ANY(d)

COMBINE(d,c)COMBINE(d,c)

SUM(DISTINCT c)

COMBINE(d)

SCAN

SINK

A

A

B B

B

C

C

C

D

D

E

STREAM
BUFFER

A Add combine operators

B Compute aggregates
• Expand grouping sets
• Select aggregation order
• Select aggregation strategies

C Propagate buffers
• Add sorting operators
• Add partitioning operators
• Add scan operators

D Connect DAG
• Consume from source operator
• Produce for sink operator

E Optimize DAG
• Replace unbounded windows
• Remove redundant combines
• Select producer order
• Select buffer layouts
• Select sort modes

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 6

From Tree To DAG
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

Γ
Π

Γ

R

SOURCE

PARTITION(d)

SORT(d,a)

SUM(b)MEDIAN(a) COUNT(b)

ANY(c) ANY(d)

COMBINE(d,c)COMBINE(d,c)

SUM(DISTINCT c)

COMBINE(d)

SCAN

SINK

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

R

A

A

B B

B

C

C

C

D

D

E

STREAM
BUFFER

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 6

Advanced Aggregates

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a
1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b))
2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc(0.5) WITHIN GROUP (ORDER BY c),

percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a
3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100
4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a
5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)
FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 7

Advanced Aggregates

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a

1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b))
2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc(0.5) WITHIN GROUP (ORDER BY c),

percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a
3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100
4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a
5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)
FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 7

Advanced Aggregates

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a
1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b))

2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc(0.5) WITHIN GROUP (ORDER BY c),
percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a

3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100
4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a
5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)
FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 7

Advanced Aggregates

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a
1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b))
2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc(0.5) WITHIN GROUP (ORDER BY c),

percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a

3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100
4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a
5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)
FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 7

Advanced Aggregates

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a
1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b))
2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc(0.5) WITHIN GROUP (ORDER BY c),

percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a
3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100

4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a
5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)
FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 7

Advanced Aggregates

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a
1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b))
2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc(0.5) WITHIN GROUP (ORDER BY c),

percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a
3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100
4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a

5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)
FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 7

Advanced Aggregates

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a
1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b))
2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc(0.5) WITHIN GROUP (ORDER BY c),

percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a
3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100
4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a
5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)
FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 7

Code Generation
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM A, B WHERE e = f GROUP BY d

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):

partitions.insert(d,(a,b))
agg1.preagg ((d,c),())

partitions.shuffle ()
partitions.sort((d,a))
for (md,sum ,cnt) in partitions:

ht2[d] = (md ,sum ,cnt ,NULL)
for (d,c) in agg1.merge ():

agg2.preagg(d, sum(c))
for (d,sumc) in agg2.merge ():

ht2[d][3] = sumc

for (d,md,sum ,cnt ,sumc) in ht2:
print(d,md,sum/cnt ,sumc)

Γ

Π

Γ

A B

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

A B

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):

partitions.insert(d,(a,b))
agg1.preagg ((d,c),())

partitions.shuffle ()
partitions.sort((d,a))

for (md,sum ,cnt) in partitions:
ht2[d] = (md,sum/cnt ,NULL)

for (d,c) in agg1.merge ():
agg2.preagg(d, sum(c))

for (d,sumc) in agg2.merge ():
ht2[d][3] = sumc

for (d,md,avg ,sumc) in ht2:
print(d,md,avg ,sumc)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 8

Code Generation
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM A, B WHERE e = f GROUP BY d

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):

partitions.insert(d,(a,b))
agg1.preagg ((d,c),())

partitions.shuffle ()
partitions.sort((d,a))
for (md,sum ,cnt) in partitions:

ht2[d] = (md ,sum ,cnt ,NULL)
for (d,c) in agg1.merge ():

agg2.preagg(d, sum(c))
for (d,sumc) in agg2.merge ():

ht2[d][3] = sumc

for (d,md,sum ,cnt ,sumc) in ht2:
print(d,md,sum/cnt ,sumc)

Γ

Π

Γ

A B

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

A B

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):

partitions.insert(d,(a,b))
agg1.preagg ((d,c),())

partitions.shuffle ()
partitions.sort((d,a))

for (md,sum ,cnt) in partitions:
ht2[d] = (md,sum/cnt ,NULL)

for (d,c) in agg1.merge ():
agg2.preagg(d, sum(c))

for (d,sumc) in agg2.merge ():
ht2[d][3] = sumc

for (d,md,avg ,sumc) in ht2:
print(d,md,avg ,sumc)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 8

Code Generation
SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM A, B WHERE e = f GROUP BY d

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):

partitions.insert(d,(a,b))
agg1.preagg ((d,c),())

partitions.shuffle ()
partitions.sort((d,a))
for (md,sum ,cnt) in partitions:

ht2[d] = (md ,sum ,cnt ,NULL)
for (d,c) in agg1.merge ():

agg2.preagg(d, sum(c))
for (d,sumc) in agg2.merge ():

ht2[d][3] = sumc

for (d,md,sum ,cnt ,sumc) in ht2:
print(d,md,sum/cnt ,sumc)

Γ

Π

Γ

A B

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

A B

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):

partitions.insert(d,(a,b))
agg1.preagg ((d,c),())

partitions.shuffle ()
partitions.sort((d,a))

for (md,sum ,cnt) in partitions:
ht2[d] = (md,sum/cnt ,NULL)

for (d,c) in agg1.merge ():
agg2.preagg(d, sum(c))

for (d,sumc) in agg2.merge ():
ht2[d][3] = sumc

for (d,md,avg ,sumc) in ht2:
print(d,md,avg ,sumc)

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 8

Tuple Buffer

Iterator Logic

emit("while #{it != end }:")
emit(" #{s = {}; g = it.keys ()}")
emit(" while #{++it != end && it.keys() == g}:")
emit(" #{ combine(s, it.values ())}")
emit(" #{ consumer.consume(s)})

• Partitioned chunk lists for materialized tuples.

• Row-major layout for generated tuple access.

• Auxiliary Permutation Vectors and Hash Tables.

• Iterator abstraction during code generation.

• Sorting in-place or with Permutation Vectors.

• In-place sorting whenever tuples are small.

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 9

Implementation

SCAN Scans materialized hash partitions.
PARTITION Materializes local hash partitions, merges across threads.
MERGE Merges partitions with repeated parallel 64-way merges.
SORT Sorts partitions with a Morsel-Driven BlockQuicksort.
COMBINE Builds partitioned hash tables after materializing input.

Flushes missing groups to local hash partitions and rehashes
between pipelines.

HASHAGG Aggregates input in fixed-size local hash tables.
Flushes collisions to hash partitions, then merges partial ag-
gregates with dynamic tables.

ORDAGG Aggregates sorted key ranges.
Scans repeatedly for nested aggregates.

WINDOW Evaluates multiple window frames for each row.

S
hu

ffl
e

T1

T2

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 10

Implementation

SCAN Scans materialized hash partitions.
PARTITION Materializes local hash partitions, merges across threads.
MERGE Merges partitions with repeated parallel 64-way merges.
SORT Sorts partitions with a Morsel-Driven BlockQuicksort.
COMBINE Builds partitioned hash tables after materializing input.

Flushes missing groups to local hash partitions and rehas-
hes between pipelines.

HASHAGG Aggregates input in fixed-size local hash tables.
Flushes collisions to hash partitions, then merges partial ag-
gregates with dynamic tables.

ORDAGG Aggregates sorted key ranges.
Scans repeatedly for nested aggregates.

WINDOW Evaluates multiple window frames for each row.

S
hu

ffl
e

T1

T2

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 10

Implementation

SCAN Scans materialized hash partitions.
PARTITION Materializes local hash partitions, merges across threads.
MERGE Merges partitions with repeated parallel 64-way merges.
SORT Sorts partitions with a Morsel-Driven BlockQuicksort.
COMBINE Builds partitioned hash tables after materializing input.

Flushes missing groups to local hash partitions and rehashes
between pipelines.

HASHAGG Aggregates input in fixed-size local hash tables.
Flushes collisions to hash partitions, then merges parti-
al aggregates with dynamic tables.

ORDAGG Aggregates sorted key ranges.
Scans repeatedly for nested aggregates.

WINDOW Evaluates multiple window frames for each row.

S
hu

ffl
e

T1

T2

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 10

Implementation

SCAN Scans materialized hash partitions.
PARTITION Materializes local hash partitions, merges across threads.
MERGE Merges partitions with repeated parallel 64-way merges.
SORT Sorts partitions with a Morsel-Driven BlockQuicksort.
COMBINE Builds partitioned hash tables after materializing input.

Flushes missing groups to local hash partitions and rehashes
between pipelines.

HASHAGG Aggregates input in fixed-size local hash tables.
Flushes collisions to hash partitions, then merges partial ag-
gregates with dynamic tables.

ORDAGG Aggregates sorted key ranges.
Scans repeatedly for nested aggregates.

WINDOW Evaluates multiple window frames for each row.

S
hu

ffl
e

T1

T2

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 10

Versus HyPer
1 thread 20 threads

Aggregates Umbra HyPer × Umbra HyPer ×
S

in
gl

e 1 SUM(e), COUNT(e), VAR_SAMP(e) GROUP BY k 3.10 4.73 1.53 0.37 0.60 1.62
2

�

, PCTL(e,0.5) GROUP BY k 4.32 9.36 2.17 0.47 0.96 2.03
3 COUNT(e), COUNT(DISTINCT e) GROUP BY k 9.61 127.63 13.28 1.21 26.52 21.90

O
rd

er
ed

-S
et 4 PCTL(e,0.5) GROUP BY k 4.00 8.88 2.22 0.43 0.92 2.14

5

�

, PCTL(e,0.99) GROUP BY k 4.02 12.66 3.15 0.42 1.40 3.31
6

�

, PCTL(q,0.5), PCTL(q,0.9) GROUP BY k 6.48 22.39 3.46 0.64 2.68 4.20
7 PCTL(e,0.5), PCTL(q,0.5) GROUP BY n 6.74 21.93 3.25 0.93 19.85 21.36

G
ro

up
in

g-
S

et
s 8 SUM(q) GROUP BY ((k,n),(k),(n)) 2.30 10.73 4.66 0.28 1.09 3.96

9 SUM(q) GROUP BY ((k,s,n),(k,s),(k,n),(n)) 2.63 16.37 6.22 0.42 1.71 4.09
10 PCTL(q,0.5) GROUP BY ((k,n),(k)) 2.43 18.11 7.46 0.24 1.85 7.56
11 PCTL(q,0.5) GROUP BY ((k,s,n),(k,s),(k)) 2.77 27.78 10.05 0.31 2.89 9.44
12 PCTL(q,0.5) GROUP BY ((k,n),(k),(n)) 1.97 26.60 13.50 0.52 10.43 20.20

W
in

do
w 13 LEAD(q), LAG(q) PARTITION BY k ORDER BY r 8.33 13.69 1.64 0.97 1.46 1.50

14

�

, CUMSUM(q) PARTITION BY k ORDER BY d 12.77 19.05 1.49 1.56 2.27 1.46
15 CUMSUM(q) PARTITION BY n ORDER BY d 5.10 12.32 2.42 0.89 10.93 12.29

N
es

te
d 16 PCTL(e - PCTL(e,0.5),0.5) GROUP BY k 6.35 12.39 1.95 0.69 1.44 2.07

17 PCTL(SUM(q), 0.5) GROUP BY k 1.58 4.08 2.58 0.20 0.52 2.62
18 SUM(POW(LEAD(q) - q,2)) / COUNT(*) GROUP BY k 5.63 10.90 1.94 0.58 1.09 1.89

e=extendedprice n=linenumber s=linestatus o=orderkey p=partkey
q=quantity r=receiptdate k=suppkey d=shipdate m=shipmode

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 11

Versus HyPer
1 thread 20 threads

Aggregates Umbra HyPer × Umbra HyPer ×
S

in
gl

e 1 SUM(e), COUNT(e), VAR_SAMP(e) GROUP BY k 3.10 4.73 1.53 0.37 0.60 1.62
2

�

, PCTL(e,0.5) GROUP BY k 4.32 9.36 2.17 0.47 0.96 2.03
3 COUNT(e), COUNT(DISTINCT e) GROUP BY k 9.61 127.63 13.28 1.21 26.52 21.90

O
rd

er
ed

-S
et 4 PCTL(e,0.5) GROUP BY k 4.00 8.88 2.22 0.43 0.92 2.14

5

�

, PCTL(e,0.99) GROUP BY k 4.02 12.66 3.15 0.42 1.40 3.31
6

�

, PCTL(q,0.5), PCTL(q,0.9) GROUP BY k 6.48 22.39 3.46 0.64 2.68 4.20
7 PCTL(e,0.5), PCTL(q,0.5) GROUP BY n 6.74 21.93 3.25 0.93 19.85 21.36

G
ro

up
in

g-
S

et
s 8 SUM(q) GROUP BY ((k,n),(k),(n)) 2.30 10.73 4.66 0.28 1.09 3.96

9 SUM(q) GROUP BY ((k,s,n),(k,s),(k,n),(n)) 2.63 16.37 6.22 0.42 1.71 4.09
10 PCTL(q,0.5) GROUP BY ((k,n),(k)) 2.43 18.11 7.46 0.24 1.85 7.56
11 PCTL(q,0.5) GROUP BY ((k,s,n),(k,s),(k)) 2.77 27.78 10.05 0.31 2.89 9.44
12 PCTL(q,0.5) GROUP BY ((k,n),(k),(n)) 1.97 26.60 13.50 0.52 10.43 20.20

W
in

do
w 13 LEAD(q), LAG(q) PARTITION BY k ORDER BY r 8.33 13.69 1.64 0.97 1.46 1.50

14

�

, CUMSUM(q) PARTITION BY k ORDER BY d 12.77 19.05 1.49 1.56 2.27 1.46
15 CUMSUM(q) PARTITION BY n ORDER BY d 5.10 12.32 2.42 0.89 10.93 12.29

N
es

te
d 16 PCTL(e - PCTL(e,0.5),0.5) GROUP BY k 6.35 12.39 1.95 0.69 1.44 2.07

17 PCTL(SUM(q), 0.5) GROUP BY k 1.58 4.08 2.58 0.20 0.52 2.62
18 SUM(POW(LEAD(q) - q,2)) / COUNT(*) GROUP BY k 5.63 10.90 1.94 0.58 1.09 1.89

e=extendedprice n=linenumber s=linestatus o=orderkey p=partkey
q=quantity r=receiptdate k=suppkey d=shipdate m=shipmode

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 11

Versus HyPer
1 thread 20 threads

Aggregates Umbra HyPer × Umbra HyPer ×
S

in
gl

e 1 SUM(e), COUNT(e), VAR_SAMP(e) GROUP BY k 3.10 4.73 1.53 0.37 0.60 1.62
2

�

, PCTL(e,0.5) GROUP BY k 4.32 9.36 2.17 0.47 0.96 2.03
3 COUNT(e), COUNT(DISTINCT e) GROUP BY k 9.61 127.63 13.28 1.21 26.52 21.90

O
rd

er
ed

-S
et 4 PCTL(e,0.5) GROUP BY k 4.00 8.88 2.22 0.43 0.92 2.14

5

�

, PCTL(e,0.99) GROUP BY k 4.02 12.66 3.15 0.42 1.40 3.31
6

�

, PCTL(q,0.5), PCTL(q,0.9) GROUP BY k 6.48 22.39 3.46 0.64 2.68 4.20
7 PCTL(e,0.5), PCTL(q,0.5) GROUP BY n 6.74 21.93 3.25 0.93 19.85 21.36

G
ro

up
in

g-
S

et
s 8 SUM(q) GROUP BY ((k,n),(k),(n)) 2.30 10.73 4.66 0.28 1.09 3.96

9 SUM(q) GROUP BY ((k,s,n),(k,s),(k,n),(n)) 2.63 16.37 6.22 0.42 1.71 4.09
10 PCTL(q,0.5) GROUP BY ((k,n),(k)) 2.43 18.11 7.46 0.24 1.85 7.56
11 PCTL(q,0.5) GROUP BY ((k,s,n),(k,s),(k)) 2.77 27.78 10.05 0.31 2.89 9.44
12 PCTL(q,0.5) GROUP BY ((k,n),(k),(n)) 1.97 26.60 13.50 0.52 10.43 20.20

W
in

do
w 13 LEAD(q), LAG(q) PARTITION BY k ORDER BY r 8.33 13.69 1.64 0.97 1.46 1.50

14

�

, CUMSUM(q) PARTITION BY k ORDER BY d 12.77 19.05 1.49 1.56 2.27 1.46
15 CUMSUM(q) PARTITION BY n ORDER BY d 5.10 12.32 2.42 0.89 10.93 12.29

N
es

te
d 16 PCTL(e - PCTL(e,0.5),0.5) GROUP BY k 6.35 12.39 1.95 0.69 1.44 2.07

17 PCTL(SUM(q), 0.5) GROUP BY k 1.58 4.08 2.58 0.20 0.52 2.62
18 SUM(POW(LEAD(q) - q,2)) / COUNT(*) GROUP BY k 5.63 10.90 1.94 0.58 1.09 1.89

e=extendedprice n=linenumber s=linestatus o=orderkey p=partkey
q=quantity r=receiptdate k=suppkey d=shipdate m=shipmode

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 11

In Action

2: count(p), count(distinct p) group by k 4: sum(q), var_samp(q), median(q - median(q)) group by k

1: sum(q) group by ((k,n),(k),(n)) 3: sum(q), var_samp(q), median(q) group by k

0 25 50 75 100 0 25 50 75 100

Time [ms]

T
h

re
a

d

scan

hashagg

partition

sort

window

ordagg

combine

*

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 12

Low-Level Plan Operators modularize aggregation logic
and drive the efficient evaluation of advanced aggregation functions.

André Kohn, Viktor Leis, Thomas Neumann | Building Advanced Analytics From Low-Level Plan Operators 13

