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Transactions
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Transactions
A transactions are a set of operations on data with 4 (ACID) 
guarantees:

● Atomicity
● Consistency
● Isolation

○ (serializability)

● Durability
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Traditional Architecture

BEGIN
x = SELECT credit FROM users WHERE id=1
UPDATE users SET credit=(x-1) WHERE 
id=1
y = SELECT stock FROM items WHERE id=1
UPDATE items SET stock=(y-1) WHERE id=1
COMMIT

id credit

1 5

Users
id stock

1 0

Items

Application
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Distributed transactions
.

• Two-Phase Commit ensures atomicity
• Two-Phase Locking ensures serializability

Combining Two-Phase Locking and Two-Phase Commit can 
be used to implement distributed transactions
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Microservice systems
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Microservices

Order service

Stock serviceUser service
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Microservices

Benefits
• Scaling components separately
• Deploying / updating components separately
• Deploying components on specific hardware
• Scaling development in organisations
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Two Generals’ Problem

Service BService A

(1) request
(2) action

(3) response

The network is unreliable, it is never certain whether a 
message will arrive

If Service A never receives message at 3, it does not know 
whether Service B has performed action at 2.
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Processing guarantees

Service BService A

(1) request
(2) action

AT_MOST_ONCE: only try to send once and do not care 
about the results, action 2 may not be performed

AT_LEAST_ONCE: keep retrying until a response is received, 
action 2 may be performed multiple times

(3) response
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Saga orchestration

Order service 
(orchestrator)

Stock serviceUser service

subtractCredit subtractStock
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Saga orchestration

Order service 
(orchestrator)

Stock serviceUser service

failed success
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Saga orchestration

Order service 
(orchestrator)

Stock serviceUser service

addStock

Transactions but with completely no isolation
Atomicity with of fault-tolerance is also hard to achieve
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Cloud computing
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Cloud computing

Make computing accessible for everyone

Goals:
• Eliminate up-front investment requirements and offer 

compute resources on demand
• Simplify distributed computing

• Deployment and scalability
• State management

● Processing guarantees (exactly-once)
● Distributed transactions
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Cloud computing

Make computing accessible for everyone

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

● Deployment and scalability
● State management

● Processing guarantees (exactly-once)
● Distributed transactions
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How can we improve on this?

Make computing accessible for everyone

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

● Deployment and scalability
● State management

● Processing guarantees (exactly-once)
● Distributed transactions



19

Serverless computing

Function-as-a-Service (FaaS) models as the 
first iteration of serverless

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

✓ Deployment and scalability
● State management

● Processing guarantees (exactly-once)
● Distributed transactions
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Function-as-a-Service

Order functions

Stock functionsUser functions
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Serverless computing

Stateful-Function-as-a-Service (SFaaS) 
models as the second iteration of serverless

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

✓ Deployment and scalability
⁓ State management

✓ Processing guarantees (exactly-once)
● Distributed transactions
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Flink Statefun
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Functions-as-a-Service

Order functions

Stock functionsUser functions
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Cluster

Stateful Function-as-a-Service

Order functions

Stock functionsUser functions

Couples messaging and state management to ensure 
exactly-once guarantees across both
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Flink Statefun
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Flink Statefun
Function instances encapsulate specific state based on their 
address (combination of type and id)

Function instances can perform four side effects:
• Updates to their encapsulated state
• Messages to other function instances
• Delayed messages to other function instances
• Messages to egresses

Function instances can be invoked by:
• Messages from other function instances
• Messages from ingresses
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Flink Statefun

state access

state update

egress message
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Flink Statefun

State is sent 
to the remote 
function

The resulting 
side effects
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Coordinator functions
for distributed transactions
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Serverless computing

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
✓ Simplify distributed computing

✓ Deployment and scalability
✓ State management

✓ Processing guarantees (exactly-once)
✓ Distributed transactions
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Coordinator functions

This relies on Statefun’s exactly_once guarantees and 
linearizable operations on single function instances
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Coordinator functions
Coordinator functions are simply specialized function instances to 
coordinate a serializable transaction or sagas

Coordinator function instances can perform side effects:
• Add messages to other function instances to the saga or 

transactions
• Add side effects to perform based on the completion of the saga

Coordinator function instances can be invoked by:
• Messages from other function instances
• Messages from ingresses
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Coordinator functions

invocations part of 
the transaction
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Coordinator functions

invocations part of 
the saga

require explicit 
compensating 
invocations
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Regular functions
• Functions should be able to fail explicitly
• Batching should be adjusted to respect isolation of 

invocations part of a serializable transaction
• Locking should be introduced
• It should participate in the protocols for sagas and serializable 

transactions
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Explicit failure

Raise an exception

Exception handler for 
non-transactional 
invocations
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Coordinator functions
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Deadlock detection

K. Mani Chandy, Jayadev Misra, and Laura M. Haas. 1983. Distributed Deadlock Detection. ACM Trans. Comput. Syst. 1, 2 (May 1983), 144–156. 
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Evaluation
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Evaluation
Based on an extension of YCSB

• Stage 1: insert x keys in the system
• Stage 2: perform of workload of read and write operations

– Extended with transfer operations
– Uniform distribution

Measured maximum throughput and latency
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Evaluation

Statefun is restricted to a number of instances and CPUs
other components are scaled so they are not the bottleneck
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Evaluation

~20% drop in performance for 100 keys
~10% drop in performance for 5000+ keys
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Evaluation

Mean Median

95th percentile
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Evaluation

Very poor performance for serializable transaction across 100 keys
More comparable performance for 5000+ keys
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Evaluation

Rollbacks have some overhead for sagas
Sagas still perform better than serializable transactions even at 

100% rollbacks
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Evaluation
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Evaluation

Consistent 90% scalability efficiency for sagas

87% scalability efficiency for serializable transactions at 10% 
transfers

75% scalability efficiency for serializable transactions at 100% 
transfers
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Conclusion
• Simple programming model abstracting away all 

distributed systems concerns from the application 
developer

• Acceptable performance overhead on non-transactional 
workloads

• Good scalability for saga-based transactions and 
acceptable scalability for serializable transactions
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Future work
Make Stateful Functions complete

• State access without specific function ID
– Secondary indices
– WHERE clause

• Aggregates over state across function instances
• Versioning of state / updating functions
• Research based on use cases developing improved benchmarks
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