
1

Distributed Transactions 
on

Serverless Stateful 
Functions

Distributed Transactions on Serverless Stateful Functions 
Martijn De Heus, Kyriakos Psarakis, Marios Fragkoulis, Asterios Katsifodimos. 
To appear in the proceedings of the 15th ACM International Conference on Distributed and Event‐based Systems (DEBS) 2021.



2

• Transactions
• Microservices & Cloud computing
• Stateful Functions & Coordinator Functions
• Evaluation
• Conclusion & discussion



3

Transactions



4

Transactions
A transactions are a set of operations on data with 4 (ACID) 
guarantees:

● Atomicity
● Consistency
● Isolation

○ (serializability)

● Durability



5

Traditional Architecture

BEGIN
x = SELECT credit FROM users WHERE id=1
UPDATE users SET credit=(x-1) WHERE 
id=1
y = SELECT stock FROM items WHERE id=1
UPDATE items SET stock=(y-1) WHERE id=1
COMMIT

id credit

1 5

Users
id stock

1 0

Items

Application



6

Distributed transactions
.

• Two-Phase Commit ensures atomicity
• Two-Phase Locking ensures serializability

Combining Two-Phase Locking and Two-Phase Commit can 
be used to implement distributed transactions



7

Microservice systems



8

Microservices

Order service

Stock serviceUser service



9

Microservices

Benefits
• Scaling components separately
• Deploying / updating components separately
• Deploying components on specific hardware
• Scaling development in organisations



10

Two Generals’ Problem

Service BService A

(1) request
(2) action

(3) response

The network is unreliable, it is never certain whether a 
message will arrive

If Service A never receives message at 3, it does not know 
whether Service B has performed action at 2.



11

Processing guarantees

Service BService A

(1) request
(2) action

AT_MOST_ONCE: only try to send once and do not care 
about the results, action 2 may not be performed

AT_LEAST_ONCE: keep retrying until a response is received, 
action 2 may be performed multiple times

(3) response



12

Saga orchestration

Order service 
(orchestrator)

Stock serviceUser service

subtractCredit subtractStock



13

Saga orchestration

Order service 
(orchestrator)

Stock serviceUser service

failed success



14

Saga orchestration

Order service 
(orchestrator)

Stock serviceUser service

addStock

Transactions but with completely no isolation
Atomicity with of fault-tolerance is also hard to achieve



15

Cloud computing



16

Cloud computing

Make computing accessible for everyone

Goals:
• Eliminate up-front investment requirements and offer 

compute resources on demand
• Simplify distributed computing

• Deployment and scalability
• State management

● Processing guarantees (exactly-once)
● Distributed transactions



17

Cloud computing

Make computing accessible for everyone

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

● Deployment and scalability
● State management

● Processing guarantees (exactly-once)
● Distributed transactions



18

How can we improve on this?

Make computing accessible for everyone

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

● Deployment and scalability
● State management

● Processing guarantees (exactly-once)
● Distributed transactions



19

Serverless computing

Function-as-a-Service (FaaS) models as the 
first iteration of serverless

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

✓ Deployment and scalability
● State management

● Processing guarantees (exactly-once)
● Distributed transactions



20

Function-as-a-Service

Order functions

Stock functionsUser functions



21

Serverless computing

Stateful-Function-as-a-Service (SFaaS) 
models as the second iteration of serverless

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
⁓ Simplify distributed computing

✓ Deployment and scalability
⁓ State management

✓ Processing guarantees (exactly-once)
● Distributed transactions



22

Flink Statefun



23

Functions-as-a-Service

Order functions

Stock functionsUser functions



24

Cluster

Stateful Function-as-a-Service

Order functions

Stock functionsUser functions

Couples messaging and state management to ensure 
exactly-once guarantees across both



25

Flink Statefun



26

Flink Statefun
Function instances encapsulate specific state based on their 
address (combination of type and id)

Function instances can perform four side effects:
• Updates to their encapsulated state
• Messages to other function instances
• Delayed messages to other function instances
• Messages to egresses

Function instances can be invoked by:
• Messages from other function instances
• Messages from ingresses



27

Flink Statefun

state access

state update

egress message



28

Flink Statefun

State is sent 
to the remote 
function

The resulting 
side effects



29

Coordinator functions
for distributed transactions



30

Serverless computing

Goals:
✓ Eliminate up-front investment requirements and offer 

compute resources on demand
✓ Simplify distributed computing

✓ Deployment and scalability
✓ State management

✓ Processing guarantees (exactly-once)
✓ Distributed transactions



31

Coordinator functions

This relies on Statefun’s exactly_once guarantees and 
linearizable operations on single function instances



32

Coordinator functions
Coordinator functions are simply specialized function instances to 
coordinate a serializable transaction or sagas

Coordinator function instances can perform side effects:
• Add messages to other function instances to the saga or 

transactions
• Add side effects to perform based on the completion of the saga

Coordinator function instances can be invoked by:
• Messages from other function instances
• Messages from ingresses



33

Coordinator functions

invocations part of 
the transaction



34

Coordinator functions

invocations part of 
the saga

require explicit 
compensating 
invocations



35

Regular functions
• Functions should be able to fail explicitly
• Batching should be adjusted to respect isolation of 

invocations part of a serializable transaction
• Locking should be introduced
• It should participate in the protocols for sagas and serializable 

transactions



36

Explicit failure

Raise an exception

Exception handler for 
non-transactional 
invocations



37

Coordinator functions



38

Deadlock detection

K. Mani Chandy, Jayadev Misra, and Laura M. Haas. 1983. Distributed Deadlock Detection. ACM Trans. Comput. Syst. 1, 2 (May 1983), 144–156. 



39

Evaluation



40

Evaluation
Based on an extension of YCSB

• Stage 1: insert x keys in the system
• Stage 2: perform of workload of read and write operations

– Extended with transfer operations
– Uniform distribution

Measured maximum throughput and latency



41

Evaluation

Statefun is restricted to a number of instances and CPUs
other components are scaled so they are not the bottleneck



42

Evaluation

~20% drop in performance for 100 keys
~10% drop in performance for 5000+ keys



43

Evaluation

Mean Median

95th percentile



44

Evaluation

Very poor performance for serializable transaction across 100 keys
More comparable performance for 5000+ keys



45

Evaluation

Rollbacks have some overhead for sagas
Sagas still perform better than serializable transactions even at 

100% rollbacks



46

Evaluation



47

Evaluation

Consistent 90% scalability efficiency for sagas

87% scalability efficiency for serializable transactions at 10% 
transfers

75% scalability efficiency for serializable transactions at 100% 
transfers



48

Conclusion
• Simple programming model abstracting away all 

distributed systems concerns from the application 
developer

• Acceptable performance overhead on non-transactional 
workloads

• Good scalability for saga-based transactions and 
acceptable scalability for serializable transactions



49

Future work
Make Stateful Functions complete

• State access without specific function ID
– Secondary indices
– WHERE clause

• Aggregates over state across function instances
• Versioning of state / updating functions
• Research based on use cases developing improved benchmarks



50

Distributed Transactions 
on

Serverless Stateful 
Functions

Martijn de Heus
4367839

Web Information Systems


