@~ DuckDB

P

Mark Raasveldt

@ DuckDB Execution Recap

o> DBMS transform SQL into query plans

e> Query plans contain operators

HASH_GROUP_BY

L_returnflag
sum(1_extendedprice)

SELECT SUM(l_extendedprice)
FROM lineitem
JO I N Orders 1_orderkey=o_orderkey

ON (l_orderkey=0_orderkey) SEQ_SCAN SEQ_SCAN
GROUP BY I_returnflag;

1_orderkey o_orderkey
1_extendedprice
L_returnflag

o> Operators need to be executed

e How?

@ DuckDB Execution Recap

o> Two paradigms: Pull-based and push-based
e Pull-based

e Pull data from other operators when required

e Push-based

®> Push data into operator when data is available

@ DuckDB Pull-Based Execution

o> DuckDB initially used a pull-based execution model
®o "\ector Volcano”

o> Every operator implements GetChunk
o> Query starts by calling GetChunk on the root

o> Nodes recursively call GetChunk on children

@ DuckDB Pull-Based Execution

o> Simplified Projection Example
void Projection::GetChunk(DataChunk &result) {
child->GetChunk(child chunk);

if (child _chunk.size()
return;
I3

executor.Execute(child chunk, result);

@ DuckDB Pull-Based Execution

e In this model:
o> Single-threaded execution is straightforward

o> Multi-threaded not so much...

- How do you make operators parallelism-aware?

@ DuckDB Pipeline Parallelism

e Exchange operator
e Optimiser splits query plan into partitions
e Partitions can be executed independently

e> Problems:

Print

. . |
e> | oad imbalance issues Exchange

Join

e Plan explosion -

Join Exchange

oc Added materialization costs L E |

Exchange Exchange Scan

Scan Scan

@ DuckDB Pipeline Parallelism

o> Morsel-Driven Parallelism

o> Individual operators are parallelism-aware

o> Query is divided into pipelines

®- Pipelines are executed in parallel

[2014] Morsel-Driven Parallelism: A
NUMA-Aware Query Evaluation
Framework for the Many-Core Age

Viktor Leis et al.

@ DuckDB Pipeline Parallelism

HASH_GROUP_BY 2: HASH AGGREGATE
_returnflag (DEPENDS ON #1)

sum(1_extendedprice)

SELECT SUM(l_extendedprice)
FROM lineitem SO
JOIN orders eyl 1: JOIN HT BUILD “ORDERS”

ON (l_orderkey=0_orderkey) SEQ_SCAN SEQ_SCAN
GROUP BY [_returnflag;

1_orderkey o_orderkey
1_extendedprice
1_returnflag

@ DuckDB Pipeline Parallelism

o> Contention happens at endpoints
e Source: Scan of orders

e- Sink: HT build of join AASH_GROUP_b

L_returnflag
sum(1_extendedprice)

HASH_JOIN

vl 1: JOIN HT BUILD “ORDERS™

SEQ_SCAN SEQ_SCAN

1_orderkey o_orderkey
1_extendedprice
L_returnflag

o- Use parallelism-aware operators at endpoints

o> Other operators (HT probe, projection, filter, etc...)
don't need to be aware

@ DuckDB Pipeline Parallelism

o> Sink Interface
e Sinks can define global and local states

o> Sink is called until all data is exhausted

e Combine is called (once per thread)

_ void Sink(
e Finalize is called (once) ExecutionContext &context,
GlobalSinkState &gstate,
LocalSinkState &lstate,
DataChunk &input);
void Combine(

ExecutionContext &context,

GlobalSinkState &gstate,

LocalSinkState &lstate);
void Finalize(

ClientContext &context,

GlobalSinkState &gstate);

@+ DuckDB Pipeline Parallelism CWI

o> Simplified Hash Join Example

void HashJoin::Sink(DataChunk &input) <

BuildHashTable(input);
s

void HashJoin::GetChunk(DataChunk &result) {

left _child->GetChunk(child chunk);
ProbeHashTable(child _chunk, result);

@ DuckDB Pipeline Parallelism

o> Pipelines are run by pulling from child of sink

e- After child is exhausted, call Combine/Finalize
o> Mix of push/pull: sink is push, rest is pull...
void RunPipeline() {
while(sink—>child—>GetChunk(child_chunk)) {
sink->Sink(child_chunk, ...);
I3
sink—>Combine(...);

if (all_threads_finished) {

sink—>Finalize(...)
ScheduleNextPipeline();

CW1

@ DuckDB Pipeline Parallelism

- How do we partition Sources?

o> Not as straightforward...

e Sources are located at the bottom of the pipeline

@+ DuckDB Pipeline Parallelism CWI

o> Set up a tasks in thread context

o> Tasks define how the scan is partitioned

o> Read those tasks in the GetChunk

void TableScan::GetChunk() {

table.ScanTask(thread context.tasks.find(this));

@ DuckDB Pipeline Parallelism

o> This mostly works
®> Problems:
o> Data flow duplicated in every operator
o> No clean interface for source parallelism
o> How to parallelize UNION nodes?
e- How to parallelize FULL/RIGHT outer joins?
e> Scan Sharing?

e Async I/0O?

@~ DuckDB

Push-Based Execution

@ DuckDB Push-Based Execution

o> \What is push-based execution?

o> Qur previous model was pull-based:

o> GetChunk called when an operator requires data

o> Push-based is the other way around

o> Push data into operators

o> Sink interface is already push-based!

@ DuckDB Push-Based Execution

o- Push-Based moves data flow out of operators
o> Data flow is handled in central location
o> Simplifies implementation of operators

o> But reduces flexibility!

@ DuckDB Push-Based Execution

o> Define Operator and Source interface

o> Operator processes data
®- Projection, Filter, Hash Probe, ...
o- Source emits data

®> Table scan, aggregate HT scan, ORDER BY scan, etc

@ DuckDB Push-Based Execution

o- Operator Interface

OperatorResultType Execute(
ExecutionContext &context,

DataChunk &input,
DataChunk &chunk,
OperatorState &state);

o Execute takes an input chunk, and outputs
another chunk

@ DuckDB Push-Based Execution

¢ Projection is straightforward

void Projection::Execute(DataChunk &input, DataChunk &result)
{

¥

executor.Execute(input, result);

@ DuckDB Push-Based Execution

e- Hash Probe seems straightforward...

void HashJoin::Execute(DataChunk &input, DataChunk &result) <{
Probe(input, result);
s

e- How do we handle multiple matches per tuple?
e 1 input entry can lead to many output entries...

o> Operators need a way of signalling they are not
done processing the input

@ DuckDB Push-Based Execution

o- OperatorResultType is used for this

enum OperatorResultType {
NEED MORE_INPUT,
HAVE_MORE_OUTPUT,
FINISHED

b r

e- NEED MORE INPUT: Operator will be called with a
new input chunk

- HAVE MORE OUTPUT: Operator will be called with
the same input chunk

e> FINISHED: The operator will not be called again,
terminates the pipeline

@ DuckDB Push-Based Execution

enum OperatorResultType {
NEED MORE_INPUT,
HAVE_MORE_OUTPUT,
FINISHED

b r

e> FINISHED required to interrupt execution
e Happens naturally in a pull-based model
e-e.g. LIMIT in pull-based simply stops pulling

o> In push-based, we need to signal to the execution
loop that we finished early

@ DuckDB Push-Based Execution

o> Source Interface

o> Similar to Sink interface

o> Global and local states

o> GetData is called until no more data remains

o> Or pipeline is cancelled earlier

void GetData(
ExecutionContext &context,
DataChunk &chunk,

GlobalSourceState &gstate,
LocalSourceState &lstate);

@~ DuckDB

Pipeline Events

@~ DuckDB Pipeline Events

SELECT SUM(l_orderkey)
FROM
(
SELECT *
FROM lineitem
UNION ALL
SELECT * SEQ_SCAN
FROM lineitem

) 1_orderkey 1_orderkey

SIMPLE_AGGREGATE

- UNION nodes

o> How do we execute unions?

@+ DuckDB Pipeline Events

o> Pull-Based: Easy, we control the flow

void Union::GetChunk(DataChunk &result) {
if (!left_done) {
left _child->GetChunk(result);
if (result.size() > 0) {
return;
s

left _done = true;

}
right_child->GetChunk(result);

e- How do we do it push-based?

@+ DuckDB Pipeline Events

SELECT SUM(l_orderkey)
FROM
(

SELECT *

FROM lineitem

UNION ALL

SELECT *

FROM lineitem

) 1_orderkey 1_orderkey

SIMPLE_AGGREGATE

o> Push-Based Union
o- Create two pipelines with same sink
o> Or more, if there are more unions

e Sink: :Finalize only after all pipelines are done!

@~ DuckDB Pipeline Events CWI

*> Pipeline Scheduling SELECT SUM(I_extendedprice)
FROM lineitem
JOIN orders
ON (l_orderkey=0_orderkey)

HASH_GROUP_BY 2: HASH AGGREGATE GROUP BY I_returnflag;
1_returnflag (DEPENDS ON #1)

sum(1_extendedprice)

HASH_JOIN

WISy R 1. JOIN HT BUILD “ORDERS” P'ﬁTE%'SIELg% PIPELINE 49
SEQ_SCAN SEQ_SCAN “URDERS" HASH AGGREGATE

1_orderkey o_orderkey
1_extendedprice
1_returnflag

o> How do we handle the Union case here?

@ DuckDB Pipeline Events

o> Split up Pipeline into Events

o> Schedule those Events

PIPELINE
PIPELINE PIPELINE PIPELINE
EXECUTE g FINISH > COMPLETE
Executes main Call Mark pipeline

pipeline Sink: :Finalize as completed

@* DuckDB

Pipeline Events

SELECT SUM(l_orderkey)

FROM

(
SELECT *
FROM lineitem
UNION ALL
SELECT *
FROM lineitem

Now we can
schedule multiple
unions that will call

Finalize once

#1: UNION LHS

EXECUTE \
#1: AGGREGATE

#2: UNION RHS
EXECUTE

b

SIMPLE_AGGREGATE

1_orderkey

FINALIZE

—

#1: AGGREGATE
COMPLETE

SEQ_SCAN

1_orderkey

@* DuckDB

Pipeline Events

SELECT SUM(l_orderkey) SIMPLE_AGGREGATE
FROM

(

SELECT *
FROM lineitem
UNION ALL
SELECT *
FROM lineitem
UNION ALL
SELECT *
FROM lineitem

Can stack multiple
unions

sum(1_orderkey)

PROJECTION

1_orderkey

SEQ_SCAN

1_orderkey

#1: UNION LHS

EXECUTE \
#2: UNION LHS #1: AGGREGATE
—>

EXECUTE /' FINALIZE
#3: UNION RHS

EXECUTE

SEQ_SCAN

1_orderkey

#1: AGGREGATE
COMPLETE

SEQ_SCAN

1_orderkey

@ DuckDB Pipeline Events

o> Full/Right Outer Joins have similar challenge
o> Three phases:

o> Build HT

e Probe HT

o> Scan HT (after ALL probing is finished)

@ DuckDB Pipeline Events

SIMPLE_AGGREGATE

sum(1_orderkey)

SELECT sum(l_orderkey) p—
FROM lineitem L ooy
FULL OUTER JOIN orders

ON (I_orderkey=0_orderkey);

HASH_JOIN

1l_orderkey=o0_orderkey

SEQ_SCAN SEQ_SCAN

1_orderkey o_orderkey

HT Scan AFTER
probe is finished

#1 HT BUILD #2. HT PROBE #2: HT SCAN #2. AGGREGATE #1. AGGREGATE
> TEXECUTE. —— ORDERS ——> FINALZE —— COMPLETE

Event can be fully
parallelized!

@ DuckDB Pipeline Events

SIMPLE_AGGREGATE

SELECT sum(l_orderkey)
FROM lineitem ey —
FULL OUTER JOIN orders Lorderkey

ON (I_orderkey=0_orderkey) HASH_IOIN
FULL OUTER JOIN part

ON (l_partkey=p_partkey);

sum(#0)

1_partkey=p_partkey

HASH_JOIN

1l_orderkey=o0_orderkey

SEQ_SCAN

#1 HT BUILD

ORDERS —» #3:HTPROBE #3: HT SCAN #3: HT SCAN

—

EXECUE — ORDERS —* PART
#2 HT BUILD / Can stack multiple

PART full/right outer joins

SEQ_SCAN

o_orderkey

#3: AGGREGATE
FINALIZE

SEQ_SCAN

p_partkey

#3: AGGREGATE
COMPLETE

@ DuckDB Pipeline Events

e Sinks often have an expensive Finalize step
o> e.g. order by - merging sorted segments

o> Need to be executed in parallel

@~ DuckDB

Pipeline Events

SELECT *
FROM lineitem
ORDER BY I_orderkey;

#1: ORDER BY
EXECUTE

#1: ORDER BY
FINALIZE

ORDER_BY

1_orderkey
1_partkey
1_suppkey
1_linenumber
1_quantity
1_extendedprice
1 _discount
1_tax
1_returnflag
1_linestatus
1_shipdate
1_commitdate
1_receiptdate
1_shipinstruct
1_shipmode
1_comment

#1 #1
—> MERGEPHASE1T — MERGEPHASE2 —*

Sink: :Finalize can
schedule additional events

#1: ORDER BY
COMPLETE

@~ DuckDB

Future Work

@ DuckDB Scan Sharing

o> Scan Sharing (TODO)
o> Detect pipelines that have the same source

e Scan once, sink into multiple pipelines

SELECT SUM(I_orderkey) e
FROM lineitem LINEITEM

UNION ALL

SELECT AVG(I_orderkey) N e
FROM lineitem:

o> Complicated by projection & filter pushdown

o> Disjoint projections -> scan sharing not useful*

* Unless we are scanning a row-store

@ DuckDB Async I/0

o> Async I/0 (TODO)
o> Current scans are still pull-based
e Fine for in-memory data

e> Reading from disk/http/etc -> stall on read

o> Async I/O solves this by pushing I/O to
background threads

o> \When I/O completes, push data into pipeline

@ DuckDB Async I/0

o- Hybrid Early/Late Materialization
o> Async I/O prefetches all required columns

o> Early materialization

o | ate materialization at times preferable

e e.g. query with selective predicate on one
column

@ DuckDB Async I/0

SELECT *
FROM lineitem
R o WHERE EXISTS
1_orderkey=1_orderkey (SELECT *
FROM orders
e PE-SCA WHERE |_orderkey=0_orderkey

AND o_orderkey=32);

Filters: o_orderkey=32 AND
o_orderkey IS NOT NULL

o> This query selects a few rows
o> But reads all columns of entire lineitem table
o> Early materialization: read entire lineitem table

o Late materialization: read |_orderkey column and
few rows from other columns

@ DuckDB Async I/0

e- Hybrid Early/Late Materialization
e | gazy vectors enable hybrid of early/late materialization

o> \When a vector is first used, fetch data from disk

o> Conflicts with Async I/0!
o> Potential solution: Hybrid Async I/0
e- Prefetch with async I/O

o> Stop prefetching for a column if we detect column
data is not required

@* DuckDB Conclusion

That's all folks!

Thanks for listening!

