
Factorization matters in large graphs
Nikolay Yakovets

Ag
AvantGraph

2

Ag
AvantGraph

Vc
Vectorized
Compiled

Mm
Main

Ra
Recursive
AnalyticsMemory

Os
Open

Source

Wco
Worst-case

Optimal

Tm
Temporal

Fz
Factorized

Re
Reachability

Td
Topo+data

not your grandma’s graph engine!

Conjunctive queries (over graphs)

3

A conjunctive query (CQ) is a “query graph”:

- Its “nodes” are the query’s binding variables; and “edges” between nodes are constituent queries

The answer of a CQ:

- Are tuples of nodes (embeddings) that match the conjuncts, joining in the way the query asks

?B

?A
r1

?D

?E

?C
r2

r5

r3

r4

r6

Q G

?A ?B ?C ?D ?E
Adam Sara Nick Paul Alice
Adam Sara Nick Jeff Tom
Adam Sara Mike Paul Mark
Adam Sara Mike Jeff Parke

… … … … …
… … … … …

…

Embeddings

Data graphQuery graph

JQKG

<latexit sha1_base64="Yt8/bfh2HZj+u79GHOMiGgWp+Nk=">AAACGHicbZDLSgMxFIYz9VbrbdSVuAkWwVWZsRfbXUFQly3YC3RKyaRpG5q5kJwRhlJ8D/du9RXciVt3voGPYXqx2OKBwMn/n0vyuaHgCizry0isrW9sbiW3Uzu7e/sH5uFRXQWRpKxGAxHIpksUE9xnNeAgWDOUjHiuYA13eD3xGw9MKh749xCHrO2Rvs97nBLQUsc8cYRwJaFDBriKHSnnl85tx0xbmVLRLmXz2M5Y08ATJVsoFhZKGs2j0jG/nW5AI4/5QAVRqmVbIbRHRAKngo1TTqRYqIeTPmvp1CceU+3R9AtjfK6VLu4FUh8f8FT92zEinlKx5+pKj8BArXoT8T+vFUGv2B5xP4yA+XS2qBcJDAGe8MBdLhkFEeuEUMn1WzEdEA0BNLWlLQo8ImPZHaemaBZEVpNfNPXLjJ3L5Ku5dPlmDimJTtEZukA2ukJldIcqqIYoekTP6AW9Gk/Gm/FufMxKE8a85xgthfH5A6+goM4=</latexit>

Conjunctive queries - challenges

Cardinality: The evaluation of graph queries is
(often) dominated by the size of the
intermediate results (IR)

- Queries are often very selective

- But, during the evaluation, the size of the

intermediate results can grow exponentially
(in the size of the graph), due to many-to-
many joins inherent in graph queries

4

{1,5,9,15}

{1,5,9,12}

{1,5,9,13} {1,5,9,14}
{2,5,9,15}

{2,5,9,12}

{2,5,9,13} {2,5,9,14}
{3,5,9,15}
{3,5,9,12}

{3,5,9,13} {3,5,9,14}

?x?w

r1
Q

?y

r2

?z

r3

?v

r4

IR

The answer-graph approach

Factorization: One way of reducing the size of
intermediate results is to apply the concept of
factorization

- the common unique node-pair patterns

- we call these factorized node-pairs, Answer

Graph (AG)

5

{1,5,9,15}

{1,5,9,12}

{1,5,9,13} {1,5,9,14}
{2,5,9,15}

{2,5,9,12}

{2,5,9,13} {2,5,9,14}
{3,5,9,15}
{3,5,9,12}

{3,5,9,13} {3,5,9,14}

?x?w

r1
Q

?y

r2

?z

r3

?v

r4

IR

?x?w ?y ?z

r1 r2 r3

1

2

3

4

5

6

7

8

11

9

10

12

13

14

15

G

Defactorization: To find all final result tuples
(i.e., embeddings), all we need to do is to
defactorize this answer graphAG

The evaluation model
Answer graph generation

‣ Edge extension: to fetch data edges from the graph

‣ Node burn-back: to ensure the generated AG is minimal (in size)

6

1

2

3

4

5

6

9

10
9

12

13

14

15

8

11

G?x?w ?y

r1 r2

⋈

r3

1

2

3

4

5

6

9

10

12

13

14

15

=

r1 r2 r3

?z?x?w ?y

edge extension

The evaluation model

7

Node burn-back is a cascaded filter operation and has three processes

‣ Nodes of AG that are not extendable with new edges are removed

‣ Removing any node from AG will trigger the removal of edges that are attached to this node

along with removal of nodes at the other side of removed edges

1

2

3

4

5

6

9

10

12

13

14

15

r1 r2 r3

?z?x?w ?y

burning nodes

The evaluation model

8

Node burn-back is a cascaded filter operation and has three processes

‣ Nodes of AG that are not extendable with new edges are removed

‣ Removing any node from AG will trigger the removal of edges that are attached to this node

along with removal of nodes at the other side of removed edges

r1 r2 r3

?z?x?w ?y

1

2

3

4

5

6

9

10

12

13

14

15

burning nodes - step 1

The evaluation model

9

Node burn-back is a cascaded filter operation and has three processes

‣ Nodes of AG that are not extendable with new edges are removed

‣ Removing any node from AG will trigger the removal of edges that are attached to this node

along with removal of nodes at the other side of removed edges

r1 r2 r3

?z?x?w ?y

1

2

3

4

5

6

9

12

13

14

15

burning nodes - step 2

The evaluation model

10

Node burn-back is a cascaded filter operation and has three processes

‣ Nodes of AG that are not extendable with new edges are removed

‣ Removing any node from AG will trigger the removal of edges that are attached to this node

along with removal of nodes at the other side of removed edges

r1 r2 r3

?z?x?w ?y

1

2

3

5
9

12

13

14

15

done burning nodes

The evaluation model

11

Embedding generation

‣ generates the final answer tuples of a CQ from an AG

‣ executing a join tree to further filter out tuples which do not belong to the final result

?d ?c ?y ?x

…

owns sameAs isAffiliatedTo

Answer graph

?e?m?z?d ?c ?y ?x?a ?b ?f
14221160 13 2 410 23 24
14221160 13 2 610 23 24
14221160 13 2 1510 23 24
........

././

././ ././

././././ linksTo

participatedIn created … …

…⋈ ⋈

⋈ ⋈

⋈

Embedding plan

Embeddings

WireFrame: the framework

12

select distinct ?x, ?m, ?y, ?z, ?a
?b, ?c, ?d, ?e, ?f
where {
?x linksTo ?m .
?x isAffiliatedTo ?y .
?x wasBornIn ?z .
?m participatedIn ?b .
?m created ?a .
?y owl:sameAs ?c .
?y owns ?d .
?z isLocatedIn ?e .
?z isPreferredMeaningOf ?f . }

?x

?z

wasBornIn

?f

isPreferredMeaningOf

?e

isLocatedIn

?y?m

isAffiliatedTo
?d

?c

owns

owl:sameAs

linksTo
?a

?b
participatedIn

created

(1)

(2)

(3)(4)

(5)

(8)

(9)

(6)(7)

?e?m?z?d ?c ?y ?x?a ?b ?f

?c ?y
owl:sameAs

?d ?yowns

?z ?e
isLocatedIn

?y ?xisAffiliatedTo

?x ?z
wasBornIn

?x ?m
linksTo

?m ?b
participatedIn

?z ?f
isPreferredMeaningOf

?a ?m
created

?d ?c ?y ?x

…

owns sameAs isAffiliatedTo

././

././ ././

././././ linksTo

participatedIn created … …

…⋈

Embedding plan

?e?m?z?d ?c ?y ?x?a ?b ?f
14221160 13 2 410 23 24
14221160 13 2 610 23 24
14221160 13 2 1510 23 24
........

././

././ ././

././././ ……

… … … …

⋈

⋈

⋈

⋈

Embeddings

Answer Graph

Conjunctive query Query graph
Answer graph plan

⋈

⋈

⋈

⋈

⋈

Query plan

The planners

13

A cost-based dynamic programming approach to find an optimal plan for evaluating
the answer graph (AG) of a query

The plan space

‣ all execution orders of edges/sub-patterns in the CQ (left-deep, right-deep, zig-zag) + bushy

‣ finding the best plan is equivalent to enumerating over all possible orders

Plan enumeration and a cost model

‣ Dynamic programming to find the optimal order

‣ In each iteration, the planner uses its cardinality estimators to calculate the cost of a tree plan and

updates the cardinality of nodes due to the node burn-back

The evaluation model

‣ execute based on the selected order of edges

‣ node burn-back filters the dead-end nodes accordingly

Ideal answer graph

14

We call an answer graph ideal if it contains only those edges which participate in at
least one final embedding.

Theorem: Node burn-back results in an ideal AG for acyclic graph CQs with number of cascaded semi-
joins bounded in .

Pf.:

‣ node burn-back results in an ordered sequence of semi-joins which contain (in correct order) a semi-join ordering

produced by the GYO algorithm

‣ this corresponds to a bounded full reducer semi-join program which guarantees no dangling tuples in the AG for

acyclic CQs

O(|Q |)

Ideal answer graph (for cyclic CQs)

15

What about cyclic CQs?

Node burn-back does not generate ideal AG for cyclic CQs in a fixed number of
cascading semi-joins:

‣ some of the edges will not participate in the final embeddings

‣ we can still use this AG in the embedding generation, but it will be more expensive

‣ can we find an ideal AG for cyclic CQs? And at what cost?

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

Query graph Answer graph

{3,4,2,1}
{7,8,6,5}

Q

JQKG

<latexit sha1_base64="Yt8/bfh2HZj+u79GHOMiGgWp+Nk=">AAACGHicbZDLSgMxFIYz9VbrbdSVuAkWwVWZsRfbXUFQly3YC3RKyaRpG5q5kJwRhlJ8D/du9RXciVt3voGPYXqx2OKBwMn/n0vyuaHgCizry0isrW9sbiW3Uzu7e/sH5uFRXQWRpKxGAxHIpksUE9xnNeAgWDOUjHiuYA13eD3xGw9MKh749xCHrO2Rvs97nBLQUsc8cYRwJaFDBriKHSnnl85tx0xbmVLRLmXz2M5Y08ATJVsoFhZKGs2j0jG/nW5AI4/5QAVRqmVbIbRHRAKngo1TTqRYqIeTPmvp1CceU+3R9AtjfK6VLu4FUh8f8FT92zEinlKx5+pKj8BArXoT8T+vFUGv2B5xP4yA+XS2qBcJDAGe8MBdLhkFEeuEUMn1WzEdEA0BNLWlLQo8ImPZHaemaBZEVpNfNPXLjJ3L5Ku5dPlmDimJTtEZukA2ukJldIcqqIYoekTP6AW9Gk/Gm/FufMxKE8a85xgthfH5A6+goM4=</latexit>

=

Embeddings

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

Triangulator

16

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

Query graph Answer graph

Q

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

We triangulate a query graph to reduce the AG further:

‣ during evaluation, additional end-points which correspond to triangles are materialized

‣ this materialization becomes an edge in a query graph called a chord

Triangulator

17

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

Query graph

Q

Answer graph

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

We triangulate a query graph to reduce the AG further:

‣ during evaluation, additional end-points which correspond to triangles are materialized

‣ this materialization becomes an edge in a query graph called a chord

Triangulator

18

Query graph

Q

Answer graph

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

We triangulate a query graph to reduce the AG further:

‣ during evaluation, additional end-points which correspond to triangles are materialized

‣ this materialization becomes an edge in a query graph called a chord

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

Triangulator

19

We triangulate a query graph to reduce the AG further:

‣ whenever a chord intersects a query edge (*-deep, zig-zag plan) or another chord (bushy plan), a seal

happens

‣ a seal triggers the edge burn-back which removes the chord edges which don’t participate in the final

embeddings, eventually removing “spurious” edges in the AG, on cascade

Query graph

Q

Answer graph

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

seal!

Triangulator

20

We triangulate a query graph to reduce the AG further:

‣ whenever a chord intersects a query edge (*-deep, zig-zag plan) or another chord (bushy plan), a seal

happens

‣ a seal triggers the edge burn-back which removes the chord edges which don’t participate in the final

embeddings, eventually removing “spurious” edges in the AG, on cascade

Query graph

Q

Answer graph

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

seal!

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

edge burn-back!

Triangulator

21

We triangulate a query graph to reduce the AG further:

‣ whenever a chord intersects a query edge (*-deep, zig-zag plan) or another chord (bushy plan), a seal

happens

‣ a seal triggers the edge burn-back which removes the chord edges which don’t participate in the final

embeddings, eventually removing “spurious” edges in the AG, on cascade

Query graph

Q

Answer graph

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

seal!

edge burn-back!

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

Triangulator

22

We triangulate a query graph to reduce the AG further:

‣ whenever a chord intersects a query edge (*-deep, zig-zag plan) or another chord (bushy plan), a seal

happens

‣ a seal triggers the edge burn-back which removes the chord edges which don’t participate in the final

embeddings, eventually removing “spurious” edges in the AG, on cascade

Query graph

Q

Answer graph

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

seal!

edge burn-back!

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

Triangulator

23

We triangulate a query graph to reduce the AG further:

‣ there are many different ways to triangulate the query graph

‣ similar to node burn-back, a DP cost-based enumeration is used to decide the best way to triangulate

Query graph

Q

Answer graph

?x
A

(1)
?e

?y

?z

D

B C

(3)

(4)(2)

seal!

edge burn-back!

3

7

4

8

6

1

5

A

A

B

B

2
C

D

C
D

?x ?e ?z ?y

Ideal answer graph

24

We call an answer graph ideal if it contains only those edges which participate in at
least one final embedding.

Theorem: Edge burn-back results in an ideal AG for cyclic graph CQs with treewidth of 2 in
cascade of at most .

Pf.:

‣ triangulation corresponds to a tree decomposition of the query graph (with a max. treewidth = 2)

‣ similar to node burn-back, the seal on cascade generates a semi-join program which contains (in correct

order) a valid bounded full reducer program produced by the GYO algorithm ran on the tree
decomposition

‣ this guarantees no dangling tuples in the materialized triangles

‣ with easy book-keeping, we can remove the corresponding edges from the binary edge relations to

guarantee no dangling tuples there

O(|Q |)

Ideal answer graph

25

We call an answer graph ideal if it contains only those edges which participate in at
least one final embedding.

We can handle queries with higher treewidth graphs, but this requires more
materialization to produce the ideal AG or using fix-point cascade

‣ Ultimately, this is a cost-based decision whether the extra materialization is worth the effort

‣ 99% of queries in practice are near acyclic

Experiments

26

Implementation. WireFrame is implemented on top of PostgreSQL

‣ Edgifier in the first phase outputs an optimal left-deep tree plan

‣ For defactorizer, we use a greedy approach to generate a tree plan

‣ Node burn-back procedure is implemented via procedural SQL

Fuller-featured implementation is available in …

Ag
AvantGraph

Experiments

27

- The size of the AG is exceedingly smaller that the number of embeddings

‣ For Q2, 3000X smaller

‣ this indicates lots of M-M joins and multiplicative effect (also in the IR)

- AG achieves excellent performance on such queries

‣ as it avoids redundant edge walks in the IR

Experiments

28

Employing only node burn-back does not guarantee the ideal AG

‣ The resulting AGs can be significantly larger that the ideal AG

‣ For this reason, WF employing only node burn-back was slower on some of the cyclic CQs

‣ Even so, the overall performance was quite good

Thank you!

29

Ag
AvantGraph

Vc
Vectorized
Compiled

Mm
Main

Ra
Recursive
AnalyticsMemory

Os
Open

Source

Wco
Worst-case

Optimal

Tm
Temporal

Fz
Factorized

Re
Reachability

Td
Topo+data

For more information, see our EDBT 21
paper:

‣ Zahid Abul-Basher, Nikolay Yakovets, Parke

Godfrey, Stanley Clark, and Mark Chignell.
“Answer Graph: Factorization Matters in Large
Graphs”. Proceedings of EDBT21.

