=% Microsoft

FASTER

Efficient state management for the modern edge-cloud

github.com/microsoft/FASTER

Badrish Chandramouli
Sr Principal Research Manager

Microsoft Research
badrish.net | @badrishc

Collaborators: Sebastian Burckhardt, Jose M. Faleiro, Ted Hart, Rohan
Kadekodi, Donald Kossmann, Chinmay Kulkarni, Tianyu Li, Hitesh Madan,
Samuel Madden, Guna Prasaad, Ryan Stutsman, and our open-source
contributors.

Talk Outline

- SimpleStore - Research Project Summary

-+ FASTER & ecosystem

- Architecture [SIGMOD 2018]
- System features & use cases
- A peek under the hood

- Epoch protection
- Async recoverability (CPR) [SIGMOD 2019]

- Multi-node FASTER
- Architecture [VLDB 2021]
- Async recoverability [SIGMOD 2021]

- Summary

The SI m pIEStO re PI"OjeCt https://aka.ms/SimpleStore

Simplify app view of [storage + cache] at high perf
GOal Create building block components

» Used by user apps, cloud services, databases, functions
« Used as storage accelerator or point of truth

- Key Insights
- Use concurrency & async recovery to create fast resilient components over tiered storage
- Leverage predicates & temporal patterns at storage to optimize cache-store

- 4

- Compute Workloads - Analytics Workloads
- Cache-store & logging lib: FASTER KV & Log - Data layout for analytics: Qd-tree
[SIGMOD 2018] [SIGMOD 2020, SIGMOD 2021]
- Recovery & Scale-out: CPR, DPR, Shadowfax - Caching for Analytics [work in progress]
[SIGMOD 2019, SIGMOD 2021, VLDB 2021]

- Secondary Indexing: FishStore
- Edge-cloud ecosystem: CRA, Surface Fleet, [SIGMOD 2019]

Ambrosia, Netherite [ICDE 2019, VLDB 2020]

The Storage Problem

- Modern apps and services — common requirements
- Apps access, update, cache huge volumes of state (or objects)

- E.g., billions of per-device counters, per-ad statistics, sharded app state in actors & serverless
- May not fit in memory, requires fast access and update, durability

- Apps need fast reliable logging and messaging as key building blocks
- Apps need to work in cloud, edge, serverless, multi-tenant environments

S—
Apps, Services, -
Streaming

Devices, Clients,
Dashboards, ...

Pipelines,
Analytics, ...

What is FASTER

An to accelerate object storage, indexing, logging

- High performance, concurrent, latch free, shared memory, in C# (also ported to C++)
- Two sub-components

1) FasterLog

- Record log abstraction over tiered storage: enqueue, commit, scan, read, truncate
- In-memory part may be updated/accessed safely as a cache
- Can be used independently as a persistent queue

2) FasterKV

- Hash key-value store over the FASTER record log (hybrid log)
- Shapes the (changing) hot working set in memory - integrated cache

- Performance: >150 million ops/sec on one machine, for YCSB benchmark
- Exceeds throughput of pure in-memory systems when working set fits in memory, linear scalability with #threads

System Architecture

Tiered Storage (e.g., local SSD, Azure Premium Stora

In Memory
threads
Hash Index
(no keys)

Hybrid Log

Vlrtual Header | Key | Value
Address | -
Space

Begin

e, RDMA) -

/

In Storage
& Memory

......................................

-~
-~
-

Header | Key | Value

Read Cache Tail

LA

I
o

A
Hybrid Log in Detall ncreasin
- Divide memory into three regions DR Sranle)| Address
- Stable (on disk) - Read-Copy-Update (RCU) Y
- Mutable (in memory) = In-Place Update (IPU) M gfi::t
- Read-only (in memory) - Read-Copy-Update (RCU)
- Memory: latch-free circular buffer with epoch protection for memory safety
Read Read-Copy
- Hybrid concurrency model % N
- Read-copy-update (RCU): compare-and-swap on index Me'r:my / ReadOnly
- In-place-update (IPU): user record-level concurrency Offset
- Tail grows = offsets grow as well »
- New records allocated at tall Mutable 'SpF;':fee
- New & updated records stay in mutable region
for a while = captures temporal locality v

LA = oo

Features, Use Cases, Performance

Basic FasterKV Features

- Latch-free basic operations

- Read, upsert, delete; no transactions
- Atomic read-modify-write (RMW)

powerful primitive for aggregation

- Friendly session-based interface

- Linearizable sequence of operations
- Prefix recovery within session (later)

- Async ops within session
- Works with C# task framework

await session.ReadAsync(key, input);

await session.RMWAsync(key, input);

- Dynamically grow index size

public static void Main()

{

using var log = Devices.CreatelLogDevice("hlog.log"); // backing storage device

using var store = new FasterKkv<long, long>(1L << 20, // hash table size (number of 64-byte buckets)

new LogSettings { LogDevice = log } // log settings (devices, page size, memory size, etc.)

)5

// Create a session per sequence of interactions with FASTER
// We use default callback functions with a custom merger: RMW merges input by adding it to value
using var s = store.NewSession(new SimpleFunctions<long, long>((a, b) => a + b));

long key = 1, value = 1, input = 10, output = 9;

// Upsert and Read
s.Upsert(ref key, ref value);
s.Read(ref key, ref output);
Debug.Assert(output == value);

// Read-Modify-Write (add input to value)
s.RMW(ref key, ref input);

s.RMW(ref key, ref input);

s.Read(ref key, ref output);
Debug.Assert(output == value + 20);

Console.WriteLine("Success!");

Advanced Features

Begin ReadOnly
- Extensible IDevice storage interface
- Local SSD, mounted drives, Azure page blobs, remote mem (RDMA) 6/

@ ain mem

Tail

- Composable via Tiered & Sharded meta-device abstractions

- Non-blocking incremental checkpointing, recovery

: long compactUntil = store.Log.BeginAddress + 0.2 * (store.Log.SafeReadOnlyAddress - store.Log.BeginAddress);
- Log compaction

compactUntil = session.Compact(compactUntil, shiftBeginAddress: false);

await store.TakeHybridLogCheckpointAsync(CheckpointType.FoldOver);

¢ <ey Ite ratl O n store.Log.ShiftBeginAddress(compactuntil);

- FasterLog: Enqueue; Commit; Iterators

- Secondary indexing [coming soon]

- Range index over keys or value fields

- Hash index over value fields: e.g., register value.pet; query value.pet == “dog”
- Based on “subset hash indexing” - see FishStore; SIGMOD 2019
- First target customer: Azure Durable Functions/Netherite

Single-node scalability with # threads

- When current working set “happens to fit" in memory

Number of Threads

150 100
_ —e— FASTER (2cpu) —&—FASTER (2cpu)
(&) N
3 —o— Intel TBB (2cpu) ©80 —e—Intel TBB (2cpu)
g— 100 Masstree (2cpu) §60 Masstree (2cpu)
:’ RocksDB (2cpu) é RocksDB (2cpu)
:)
= 240
g» 50 5
= £ 20 \\—o_.\'_‘_.
[V\.\.__‘_.,._. [
0 10 20 30 40 50 60) 4
10 0Number%? Threads 0 >0 60

100% RMW; 8 byte payloads

100% blind updates; 100 byte payloads

Scalability with Disk-Resident Data

- YCSB, 100% read workload
- Hash table in memory, almost entire log on disk, no caching
- Local NVMe SSD capable of up to 1 million random IOPS.

1000
900

+ .

()
o
(@)

700
600
500
400
300
200
100

0
0 5 10 15 20 25 30 35 40

threads

Throughput (x 1000 ops/sec)

Sample of Use Cases

Azure Stream Analytics
- Uses FasterKV for externalizing reference data and records in large cloud streaming pipelines

Azure Event Grid

- Uses FasterLog for fast reliable routing and notification service on edge

Azure Durable Functions

- We built a new stateful serverless backend called Netherite

- System uses FasterKV (for function state) and FasterLog (for fast replayable messaging)
- See details in their paper: https://arxiv.org/abs/2103.00033

Many GitHub use cases:

Jan-2021: Nov-2020:

Using FasterKV. Using FasterLog

I decided to run with Faster in our production system On Azure D2as_v4 machines. We have about 1000 stores
after your help and rewriting things a bit to suit our but they are all really tiny (less than 1000 messages per
actual usecase. <snip> | think the speed is actually pretty store). The largest store is about Tmb and most of the
good for 50k+ devices hitting our system in the short stores are < 100kb, for a total of some 200mb across Tk

term and we can improve later. stores.

https://arxiv.org/abs/2103.00033

A Peek Under the Hood

dE

(

the generalized epoch framework

)

o

Multi-Threading: Epoch Protection Basics

- System Requirement

- avoid any coordination between threads in common case
- agree on mechanism to synchronize on shared system state

- Solution: epoch protection
- System maintains shared counter E (current epoch) - can be “bumped” by any thread
- Each thread keeps a (stale) local epoch counter copied from E
- An epoch c is “safe” if all thread-local epochs are greater than ¢

Safe Epochs > 1 2 3 4
Thread 1 1 2 i3 4 5
Thread 2 1 2 I 4 5
Thread 3 1 I 3 4 5
Thread 4 1 2 | 3 l 4 | 5

Current Epoch = 2 3 4 5 Increasing Time —

Extending Epochs: Trigger Actions & Marking
- Trigger Actions

- Associate a trigger (function callback) with epoch bump from c to c+17
- Trigger action will be executed later, when ¢ becomes safe
- Simplifies lazy synchronization in multi-threaded systems

- Example: invoke function F() when (shared) status becomes “active”
- Thread updates shared variable status = “active”, then bumps current epoch with trigger = “invoke function F()"

BumpEpoch(() => F());
- Guaranteed that all threads have seen "active” status before F() is invoked
- Marking
- Mark: thread “marks” an operation/phase as complete
- ChecklfComplete: thread checks if everyone has completed phase; if yes: advance phase

- FASTER uses epochs, triggers, marking extensively

- Threads agree to respect global system state at epoch refresh boundaries
- Memory safety, index resizing, log buffer maintenance, checkpoint state machine

Recovery: Concurrent Prefix Recovery

- In memory part of hybrid log is lost on update

- New recovery model for concurrent DB/KVS

- Persist all ops until some point in input op sequence, per thread, none after

- Combines worlds of DB group commit
and in-memory incr. checkpointing

- Admits scalable non-blocking
implementation using epochs

- Fully implemented in FASTER

- See SIGMOD 2019 paper
- https://aka.ms/FASTER

T, T, TZB T,

T8< T, Tg Tg

o
~ v

Database
or KV

N~

Remote FASTER

from embedded to clients = servers

Remote FASTER

- Goal: access FASTER as mid-tier cache/store from remote clients

A AR
compute compute compute
(..., 0¢,04,0g, ...)
X X

sharded

hi e v et v
ca'fielrng
cache cache cache cache

0 i i\ 0
st!age st!age st’age - sto-
A

rage
B C D

- Brief Summary

- Get the same FASTER throughput scalable with #threads, from remote client sessions
- Low round-trip latencies (< 100microsec for one request in datacenter)
- Uses standard TCP protocol; also supports RDMA

- Server inherits rich FASTER features (tiered storage, checkpoints, RMW, ...)

Shadowfax
- Elastic client-server prototype FASTER C++

—8— Faster == Shadowfax =-#— w/o Accel
(no network)

125 =
100 -
75=
50 -
25-

- Uses standard TCP on cloud VMs
+ We get high performance (100+ Mops/sec per server)

- Low latency <100 psec round-trip in Azure data center
- Also supports RDMA access

Throughput (Million Ops/s)

| 8 16 24 32 40 48 56 64
Number of Threads

YCSB Zipf workload
8B key, 256B value

. Key ideas in ShadOWfaX —8— Seastar —#— Seastar—NOP —#— Shadowfax
- Eliminate “shuffle” at network layer (+ memcached)

- Use “asynchronous global cuts” across machines %iéz
+ epochs within machine for elastic state migration ;% s
Té 50 =
. £ 25-
* DetallS: paper at VI_DB 2021 é 0-]] I]]] 1 1 1 1] 1 1 1] I
=

—_—

8 16 24 32 40 48 56 64
Number of Threads

- https://arxiv.org/abs/2006.03206

Uniform, with Accel
8B key, 256B value

https://arxiv.org/abs/2006.03206

Distributed Prefix Recoverability (DPR)

)

o

prefix recovery for client sessions
talking to multiple shards

(

The Compute-Storage Pattern

- Read & write ops served from

durable storage

Azure Function _%_
Workflow Step Compute

Client App
N

Framework

msec

V

!r storage

Azure Blobs, SSD, DB, KVS, FASTER Disk Log

(local or remote)

- Reads: served from cache

- Writes:

- Go through to durable storage, or
- In 1 failure domain: ops complete 2> commit

74

i

compute
T
""""" Redis
0000 Main memory DB (local or remote)
FASTER - mutable region
cache
- .
storage

Let's Shard the Data

- Shared-nothing state - Global shared state

@\»

workflow - & & &

1 1 1
compute compute compute

(...,0¢, 04,08, ..

i)
7 7 7z X x

corﬁlﬁute corﬁlﬁute corﬁlﬁute
sharded
T\L T\L T\L caching | | @E=== = G«
tier 0000 0000
I 0000 0000 I 0000 cache cache
I cache cache I cache /]\\L
8 18 8 K
storage storage storage - '
A B C
storage storage storage storage

A B C D

Goal: Distributed Compute on Sharded Cache-Stores

- Normal behavior

- Return operations immediately; before commit &
+ Including writes, not just reads -
compute

- Preserve client’s notion of operation dependencies
via lazy prefix commits

7| . [

1 |
compute compute

caching
tier

- At low cost with no cross-shard overheads charded {{

mmoJaTm

@ EIEIEIEIJ

cache

- Behavior on shard failure 5

- Rollbacks will happen due to multiple failure domains
(unlike CPR)

- Limit effect of rollback to true dependencies

- Make rollbacks non-blocking
- Notify affected client sessions of rollback of uncommitted ops

storage

cabie I
(VR AR VA -

storage storage storage

Basic Idea: Client Session to Capture Dependencies

- Clients issue ops to cache-store shards
- Op status can be { issued, completed, committed }

- Client Session captures op dependencies
- Issued op depends on all previous “completed” ops in session (transitive)

- Issued==completed: ﬂ—>a ’ ’H

- Issued !'= completed: | yeq: H //M /M

» Session Time

- Periodically commit prefixes of session order .
- An order of ops that respects partial order of op dependencies Oc "B.: 04
*

- Implemented DPR for FASTER & Redis
- Details: see SIGMOD 2021 (to appear)

74

i
compute

(...,0g,04,0p, ...)

¥

sharded cache-store

 J | J

L L L

|| | |
0p,%c 9B Op_ 04,

. * 0
* * *

Recoverability Summary

- Clients talk to sharded cache-stores via linear sessions

- Separate op completion from commit

- We provide a prefix recovery guarantee

within each session
- Requires dependency tracking mechanism

- Client rollback in case of failure
- Applicable to stores and workflows
- Details in paper at SIGMOD 2021

1 1 _1_
compute compute compute
(..., 0¢,04,08,...)
X 4\}
sharded
h' v —u— rmvaTm T
Ca’fielrngJ
cache cache cache cache
N N T N
storage storage storage storage
A B C D

Talk Summar y

Summary

- SimpleStore project aims to simplify the use of storage for apps,
workflows, services, analytical databases, serverless

- The FASTER project offers

- A concurrent latch-free embedded library for managing memory and tiered storage
- Two concrete artifacts: FasterKV and FasterLog

- Secondary indexing for log analytics & range queries
- Remote access without performance loss

- Novel recovery techniques for single- and multi-node DB

- DB techniques are generally applicable beyond artifacts
- More details at https://aka.ms/FASTER

- Link to research papers: https://microsoft.github.io/FASTER/docs/td-research-papers/

https://aka.ms/FASTER
https://microsoft.github.io/FASTER/docs/td-research-papers/

Thank you!

https://aka.ms/FASTER

