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Graph Database Management Systems Overview

» Read-optimized systems designed for analytical workloads

with large many-to-many (n-n) joins

Data Query
Model L anquage

Labeled Graph Graph-specific SQL Storage: Graph-specific

System
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Differences Between “Native GDBMSs” vs RDBMSs

1. Pre-defined but fast joins (access paths) of n-n relationships

Network Model (1960s)
IDS: First DBMS in history

\
Charles Bachman

Relational Model (1970s)

Ted Codd

Much of the derivability power of the relational
algebra is obtained from the SELECT, PROJECT, and
JOIN operators alone, provided the JOIN is not subject
implementation restrictions having to do with
predefinition of supporting physical access pathsJA sys-
tem has an unrestricted join capability if it allows joins to
be taken wherein any pair of attributes may be matched,
providing only that they are defined on the same domain

... but also the reason GDBMSs can be very fast at those joins.



Differences Between “Native GDBMSs” vs RDBMSs

1. Pre-defined but fast joins (access paths) of n-n relationships
2. Semi-structured data model
» No fixed schema

3. More support for variable-length recursive join queries

“Give me all direct or indirect possible sources of money
flow into Alice’s account from Canada.”

MATCH a-[:Transfer*]->b
WHERE a.location=Canada AND b.owner=Alice

Can be done in recursive SQL but harder
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» In-memory Graph DBMS: Property graph model & openCypher
» Two primary features:

1. Very fast joins of n-n relationships:

GraphflowDB RDBMS Literature
Multiway intersection-based joins WCO joins
List-based Query Processor Factorized DBs
A+ Indexes: Flexible Adjacency Partitioned and Compressed
List Indexes Materialized Views

2. |Scalability: compressed, in-memory columnar storage



Column Stores: Read-optimized for Analytical Workloads

Storage Query Processor
ID | SELECT *

e age salary FROM Employee E, Manager M

3121 25 2000 WHERE E.eID = M.eID AND age > 40

2431 29 2000 HashJoin

1113 34 2000 D4

5110 35 2000 3121 | 4Q|p - 46

9926 | | 46 | | 3000 \205\ W928" 28

> Offset-based access Scan Managers: [ Scan Employees:

elD, mID age > 40, elD )

» Compression: e.g. RLE

> Block at-a-time

el > Good CPU utilization
2000, 0, 4 elD 3121 2431 1113 5110 9926
3000, 4,1 age 25 29 34 35 46
fmask 0 0 1 1 1

But not optimized for n-n joins and access patterns of graph workloads



Outline

» Overview of Access Patterns in GDBMSs
» Example Columnar Data Structures & Compression
Scheme: Null Compression

» List-based Query Processing



Outline

» Overview of Access Patterns in GDBMSs



Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021
RETURN a, b

> (es,Vs)

(ellv4)

(e3,v3)

> (e4,V4)

> null
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Overview of Access Patterns in GDBMSs
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Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021

RETURN a, b " Filter )
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Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021

RETURN a, b " Filter )
‘ el.year>2021
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Data
m sssssss 12
Group



Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021
RETURN a, b

Edge/vertex properties are read in the order they appear in adj. lists.
Desiderata 1: Store edge (but not vertex) properties in the same order

> (es,Vs)

(e1,va) [l (e3,vs3) 1

> (e4,V4)

> null

| W NN| -

/

Filter
el.year>2021

. b.age>40 )

~

Ve

year || age
2001 46
2020 22

[ 23
1995 65
2003

-

Extend: el1, b

~

J

(s |

» bl/c each edge accessed from 2, but each v from deg(v) locations

Desiderata 2: Require constant decompression time for vertex props.

» b/c access won't be sequential (unless system incurs deg(v) replication)
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Outline

» Example Columnar Data Structures & Compression

Scheme: Null Compression

14



Example Columnar Data Structures: Edge Properties (1)

» Recall Desiderata 1: Store edge properties in order of adj lists.

» Option 1: Vanilla edge columns. Random access on both directions.

Fwd Lists
1 Pl (es,va) | (ey,va) | (e3,v3)
2 P (eq,Vs)
3 >null
4 > (eyvy)

Fwd year Lists

=

2003

2001

2017

>

1995

> null

A W N -

=

2020

Bwd Lists
year
lgiicad) 2001
2 Pllesvi) 2020
3 > (e3vq) 2017
4 1> (ey,v1) | (eaVs) 1995
2003

Option 2: Double-indexed edge property lists

Bwd year Lists

» Sequential in both directions
» Works w/ any edge ID scheme
» Requires 2x RAM

1 Pl 2020
2 > 2003
3 > 2017
4 2003 | 2001

15



Example Columnar Data Structures: Edge Properties (2)

» Option 3: Single-indexed edge property lists

Fwd Lists Bwd Lists Fwd year Lists
1 b (es,va) | (e1,va) | (e3,v3) 1 > (e3,va) 1 {2003 - 2017
2 13 (e4,v4) 2 > (es,vq) 2 > 1995
3 (>null 3 P (e3,Vvq) 3 >null
4 1> (e5,v1) 4 P (e,vq) | (esvy) 4 13 2020

» Sequential reads in fwd direction.
» Can we get random backward access?
» Solution: edge ID scheme w/ list-level offsets
» E.g: eq: (edge label, srclD, list-offset), so e;: (KNOWS, v,, 2)
» Unlike columnar RDBMS, GDBMS physically store IDs/offsets
» Problem: deletions leave gaps; recycling list-level offsets is hard.

Final implementation is a variant of this data structure called
DSCi- Edge Property Pages that is more update friendly i



Example Compression Schemes: Null Compression (1)

» Desiderata 2: Require constant decompression time for vertex props.

» Existing schemes designed for sequential access [Abadi, CIDR 07]

» For random access: compute in O(1) the rank of positions in bitmap

» Solution: Enhance w/ Jacobson’s rank index [Jacobson, FOCS '89]

o Vo Vi V2 V3 V4 Vs Vg V7 Vg | Vg | Vio Vi1 V2 Viz Vg Vg5
original: 7|1-16]3]2 8 | 11 2 | 3
[ | 1 1 1
bitmap: ojo|1[ofz]2[1]ofo[1]1]o]1]1]o]0 01 2 3
I

prefix sums: |0(1 4|6

nonNulls: 7163 2\8‘ 11213

t
?

value at pos 9 = nonNulls[4+1] = 8

0101 [(O|1(1(2
0110 [0 1|22
0111 (01|23

Bit pos-to-index map
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Example Compression Schemes: Null Compression (2)

» LDBC100 w/ different NULL densities on creationDate column (220M)
MATCH (a:Person)-[e:LIKES]->(b:Comment)

RETURN b.creationDate

% Uncompressed @ J-NULL

N
[&)]

e
£ 2 o000
o @
@ o
(&)
S 15 / ¥
3 ¥ % N
o * 2 .*_*.*
& D
s 10| &
Q.
(@]
<
5 5
(0]
£
[ em
2 0
0 25 50 75 100

Percentage of non-NULL values

Size of Column (in GB)

1.00

o
~
[&)]

0.50

o
)
o

0.00

M Vanilla-NULL

Y= e 1 Y =Y Y =Y Fyle =

25 50 75 100

Percentage of non-NULL values

Within 1.2x-1.5x of uncompressed; faster w/ density is <30%

Used to compress properties as well as empty lists in CSRs.
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Outline

» List-based Query Processing

19



Traditional Block-based Processing on N-N Joins

Knows Knows WorkAt
MATCH @ @ '—»‘

WHERE a.age > 50 RETURN *

Knows
WorkAt

: many-to-one

[ Scan H Extend H Extend J_w

a age | fmask
a 51 1
a, 19 0
a4 | 60 1

Problem 1: Value repetition (or selector indices) b/c 1 group of vectors is used

Problem 2: Fixed length blocks (e.g., 1024) which don’t align with adj. list sizes

: many-to-many with avg deg 512

C d fmask
Cq d1 1
Cy d, 1
Cs12 | dsio 1
Csy3 | dsi3 1
C1024 | d1024 1

20



List-based Processor (1)

» Factorization [Olteanu, SIGMOD Rec. ‘16]

a|age| b | c d

dq 51 b1 Cq dl d, dge b E,_d

a; | 51 | by | d, {a;, 51} | X' | {b4} X {[cy, di] [cy, dy] ...,

{Cs512, ds12]}

a; | 51 | by | Cs1o | ds1y Y

a; | 51 | b, | csq3 | dsys {ay, 51} | X | {ba} X {[cs13, ds13] [C514,
dsi4] ..., {C1024, d1024]}

a; | 51 | by | €024 | d1024

» List groups
» Represent intermediate tuples in multiple vector groups
» Variable-sized vectors aligned to adjacency lists

» Vectors storing node and edge IDs are pointers to lists in storage
D52 e 21



List-based Processor (2)

MATCH @Knows @ Knows Knows : many-to-many with avg deg 512
WorkAt : many-to-one

—_—

WHERE a.age > 50 RETURN *

Scan Extend Extend Extend
a b C d
t f t

List Group 1 List Group 2 List Group 3
a | age | fmask b | fmask C ﬁdhﬂllfumalsk
[[ a, | 51 1 | b 1| Gy || dslis| | ]| 22
a, | 19 0 b, 1 Gog || dellaf ||| 11
bs1, 1 Csa2s || Whbhd 11
curldx = 21 curldx = -1
a1024 | 60 1

curldx = 11

22



List-based Processor (3)

» Modified version of LDBC SNB Interactive Complex Read queries
» Scale Factor 10, 30M Vertices and 176.6M Edges

» 2.6GHz CPU, 512GB RAM, single threaded execution

» GF-RT: Graphflow w/ old row-based storage & tuple-at-a-time

Volcano processor

IC1 1IC2 IC4 IC5 IC6 |IC7 IC8 IC9 IC11 1C12
GF-LBP |[36.7 |32.4 131 1565.2 | 113.0 |3.0 2.6 1519 | 11.1 34.2

GF-RT 88.4 45.2 57.3 8925.0 | 333.1 6.3 7.0 2098 | 19.2 84.9
2.4x 1.4x 4.4x 5.7x 3.0x 2.1x 2.7 1.4x | 1.7x 2.5x

runtimes in seconds

Larger differences on queries with joins followed w/ aggregations

Larger differences w/ baseline column stores and Neo4j
D52 e 23




Other Techniques

» Other columnar data structures (e.g., one-many or one-one edges)

ID compression schemes

» More details on LBP
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Integrating Column-Oriented Storage and Query
Processing Techniques Into Graph Database Management
Systems

Pranjal Gupta, Amine Mhedhbi, Semih Salihoglu
University of Waterloo

{pranjal.gupta, amine.mhedhbi, semih.salihoglu}@uwaterloo.ca

ABSTRACT
We revisit column-oriented storage and query processing
techniques in the context of contemporary graph database
management systems (GDBMSs). Similar to column-orien-
ted RDBMSs, GDBMSs support read-heavy analytical work-
loads that however have fundamentally different data ac-
cess patterns than traditional analytical workloads. We
first derive a set of desiderata for optimizing storage and
query processors of GDBMS based on the access patterns
in GDBMSs. We then present the design of columnar stor-
age, compression, and query processing techniques based on
these requirements. In addition to showing direct integra-
tion of existing techniques from columnar RDBMSs, we also
propose novel ones that are tailored for GDBMSs. These in-
clude a novel lst query processor, which avoids expen-
sive data copies of traditional block-based processors under
joins and avoids jalizing adjacency lists
in intermediate tuples, a new data structure we call single-
indexed edge property pages and an accompanying edge ID
scheme, and a new application of Jacobson’s bit vector in-
dex for compressing NULL and empty lists. We integrated
our techniques into the GraphflowDB in-memory GDBMS.
Through extensive experiments, we demonstrate the scala-
bility and performance benefits of our columnar storage and
the query performance benefits of our list-based processor.

INTRODUCTION

Contemporary GDBMSs are data management software
such as Neod; [7], Neptune [1], TigerGraph [12], and Graph-
flow [41, 48] that adopt the property graph data model [9].
In this model, application data is represented as a set of
vertices, which represent the entities in the application, di-
rected edges, which represent the relationships between en-
tities, and key-value properties on the vertices and edges.

GDBMSs have lately gained popularity to support a wide
range of analytical applications, from fraud detection and
risk assessment in fma.ncml services to recommendauom in
e-commerce and social networks applications
have workloads that seareh for pdttenla ina graph -structured
database, which often requires reading large amounts of
context of RDBMSs, column-oriented sys-

61] employ a set of read-optimized storage,
indexing, and query pro techniques to support tra-
ditional analytics apphc.mom such as business intelligence
and reporting, that also process large amounts of data. As

g

such, these columnar techniques are relevant for improving
the performance and scalability of GDBMSs.

In this paper, we revisit columnar storage and query pro-
cessing techniques in the context of GDBMSs. Specifically,
we focus on an in-memory GDBMS setting and discuss the
applicability of columnar storage techniques [55], compres-
sion schemes [14, 16, 63], and vector-based query process-
mg [1,, 24] for storing and accessing different components

tem. Even though analytical workloads that are
run on GDBMSs and those on column-oriented RDBMSs
exhibit many similarities, they have different fundamental
data access patterns. This calls for redesigning columnar
techniques in the context of GDBMSs. The contributions of
this paper are as follows.
Guidelines and Desiderata: We begin in Section 3 by ana-
lyzing the properties of data access patterns in GDBMSs.
For example, we observe that different components of data
stored in GDBMSs can have some structure and the order
in which operators access vertex and edge properties often
follow the order of edges in adjacency lists. This analysis
instructs a set of guidelines and desiderata for designing the
physical data layout and query processor of a GDBMS.
Columnar Slmugu Section 4 explores the application ol
columnar structures for storing different components of
GDBMSs. While exist ing columnar structures can dxmntly
be used for storing vertex properties and many-to-many (n-
n) edges, we observe that using a straightforward columnar
structure, which we call edge columns, to store properties
of n-n edges is suboptimal as it does not guarantee sequen-
tial access when reading edge properties in either forward or
backward directions. An alternative, which we call double-
indezed property CSRs, can achieve sequential access in both
directions but requires duplicating edge properties, which
can be undesirable as graph-structured data often contain
orders of magnitude more edges than vertices. We then
scribe an alternative design point, single-dircctional property
pages, that avoids duplication and achieves good locality
when reading properties of edges in one direction and still
guarantees random access in the other when using a new
edge ID scheme that we describe. Our new ID schemes allow
for extensive compression when storing them in adjacency
lists without decompression overheads. Lastly, as a new ap-
plication of vertex columns, we show that single cardinality
edges and edge propen.les ice. those with one-to-one (- 1),

y (1-n) o (n-

wtored more efficiently with vertos columas instead of the
structures we described above for properties of n-n edges.
Columnar Compression: In Section 5, we review existing

Find on arXiv next Monday
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Abstract

Graph processing is becoming increasingly prevalent across many application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (i) the graph computations users run; (ii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants® responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, ility and visualization are iably the
most pressing faced by partici and data i i and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

raph Computations?

raph Software?

Keywords User survey - Graph processing - Graph databases - RDF systems
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1 Introduction prevalence of work on graph processing both in research and u
in practice, evidenced by the surge in the number of different L)
Graph data representing connected entities and theirrelation-  commercial and research software for managing and pro- . H
ships appear in many application domains, most naturallyin  cessing graphs. Examples include graph database systems
social networks, the Web, the Semantic Web, road maps, [13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
communication networks, biology, and finance, just toname  bra software [17,63], visualization software [25,29], query
a few examples. There has been a noficeable increase in the  languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of . .
Electronic supplementary material The online version of this article  publications that study numerous topics related to graph pro- -
supplementary material, which is available to authorized users.
venues. L ] L
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graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?

(if) What computations do users run on their graphs?

(ifi) Which software do users s to perform their computa-
tions?
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