Integrating Column-Oriented Storage and

Processing Techniques into GraphflowDB

Semih Salihoglu
Joint w/ Pranjal Gupta, Amine Mhedhbi

*Graphf!
ow
2P f

Data
Systems
Group

wATERLoo | DBE

Graph Database Management Systems Overview

» Read-optimized systems designed for analytical workloads

with large many-to-many (n-n) joins

Data Query
Model L anquage

Labeled Graph Graph-specific SQL Storage: Graph-specific

System

name:Alice MATCH a->b->c,c->a T 5 13 | a
WHERE a.age > 30 ' ' ' |
RETURN (a,b).amount JL ’—‘L‘ ’JH ’JH
2 1| (4|15
3
4
name: CZ?Z?””' o name:Bob Query Processor: Fast
traversals, i.e., nested index
loop joins

Differences Between “Native GDBMSs” vs RDBMSs

1. Pre-defined but fast joins (access paths) of n-n relationships

Network Model (1960s)
IDS: First DBMS in history

\
Charles Bachman

Relational Model (1970s)

Ted Codd

Much of the derivability power of the relational
algebra is obtained from the SELECT, PROJECT, and
JOIN operators alone, provided the JOIN is not subject
implementation restrictions having to do with
predefinition of supporting physical access pathsJA sys-
tem has an unrestricted join capability if it allows joins to
be taken wherein any pair of attributes may be matched,
providing only that they are defined on the same domain

... but also the reason GDBMSs can be very fast at those joins.

Differences Between “Native GDBMSs” vs RDBMSs

1. Pre-defined but fast joins (access paths) of n-n relationships
2. Semi-structured data model
» No fixed schema

3. More support for variable-length recursive join queries

“Give me all direct or indirect possible sources of money
flow into Alice’s account from Canada.”

MATCH a-[:Transfer*]->b
WHERE a.location=Canada AND b.owner=Alice

Can be done in recursive SQL but harder

0l

Graphf/ow
SREAP f

» In-memory Graph DBMS: Property graph model & openCypher
» Two primary features:

1. Very fast joins of n-n relationships:

GraphflowDB RDBMS Literature
Multiway intersection-based joins WCO joins
List-based Query Processor Factorized DBs
A+ Indexes: Flexible Adjacency Partitioned and Compressed
List Indexes Materialized Views

2. |Scalability: compressed, in-memory columnar storage

Column Stores: Read-optimized for Analytical Workloads

Storage Query Processor
ID | SELECT *

e age salary FROM Employee E, Manager M

3121 25 2000 WHERE E.eID = M.eID AND age > 40

2431 29 2000 HashJoin

1113 34 2000 D4

5110 35 2000 3121 | 4Q|p - 46

9926 | | 46 | | 3000 \205\ W928" 28

> Offset-based access Scan Managers: [Scan Employees:

elD, mID age > 40, elD)

» Compression: e.g. RLE

> Block at-a-time

el > Good CPU utilization
2000, 0, 4 elD 3121 2431 1113 5110 9926
3000, 4,1 age 25 29 34 35 46
fmask 0 0 1 1 1

But not optimized for n-n joins and access patterns of graph workloads

Outline

» Overview of Access Patterns in GDBMSs
» Example Columnar Data Structures & Compression
Scheme: Null Compression

» List-based Query Processing

Outline

» Overview of Access Patterns in GDBMSs

Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021
RETURN a, b

> (es,Vs)

(ellv4)

(e3,v3)

> (e4,V4)

> null

| W NN| -

/

Filter
el.year>2021

. b.age>40)

~

Ve

year || age
2001 || 46
2020 || 22
2017 || 23
1995 || 65
2003

-

Extend: el1, b

~N

J

(s |

Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021

RETURN a, b " Filter)
el.year>2021

(es,vo) | (eq,va) | (e3,v3) year || age \ b'ag? >40)
> (e4,va) 207 | 4 / Extend: e1, b \
> null 2020)| 22 | { f)

2017 || 23
> (e,,v1) '
1995 || 65 [. }
Scan: a
2003

Data
m sssssss 10
Group

Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021

RETURN a, b " Filter)
el.year>2021

1 '> (e1,va) | (e3,v3) year || age N b.ag? >40)
2 P (e4,V4) 2001 || 46 ‘ N
| Extend: e1, b
3 [»null 2020 .])
2017 23
4 > (evy)
1995 || 65 [| }
Scan: a

Data
m sssssss 11
Group

Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021

RETURN a, b " Filter)
‘ el.year>2021
1 pl (es,v2) [[(e1,va) ‘ (e3,v3) year age N b-ag? >40)
2 b (eqva) 2001 f| 46 | '/ T
xtend: e1,
3 [>null 20201 22 | L “)
2 b (epvy) 2017 23
V1
1995 [Scan: a }
2003

Data
m sssssss 12
Group

Overview of Access Patterns in GDBMSs

MATCH (a:Person)-[e:LIKES]->(b:Person)
WHERE b.age > 40 & e.year > 2021
RETURN a, b

Edge/vertex properties are read in the order they appear in adj. lists.
Desiderata 1: Store edge (but not vertex) properties in the same order

> (es,Vs)

(e1,va) [l (e3,vs3) 1

> (e4,V4)

> null

| W NN| -

/

Filter
el.year>2021

. b.age>40)

~

Ve

year || age
2001 46
2020 22

[23
1995 65
2003

-

Extend: el1, b

~

J

(s |

» bl/c each edge accessed from 2, but each v from deg(v) locations

Desiderata 2: Require constant decompression time for vertex props.

» b/c access won't be sequential (unless system incurs deg(v) replication)

13

Outline

» Example Columnar Data Structures & Compression

Scheme: Null Compression

14

Example Columnar Data Structures: Edge Properties (1)

» Recall Desiderata 1: Store edge properties in order of adj lists.

» Option 1: Vanilla edge columns. Random access on both directions.

Fwd Lists
1 Pl (es,va) | (ey,va) | (e3,v3)
2 P (eq,Vs)
3 >null
4 > (eyvy)

Fwd year Lists

=

2003

2001

2017

>

1995

> null

A W N -

=

2020

Bwd Lists
year
lgiicad) 2001
2 Pllesvi) 2020
3 > (e3vq) 2017
4 1> (ey,v1) | (eaVs) 1995
2003

Option 2: Double-indexed edge property lists

Bwd year Lists

» Sequential in both directions
» Works w/ any edge ID scheme
» Requires 2x RAM

1 Pl 2020
2 > 2003
3 > 2017
4 2003 | 2001

15

Example Columnar Data Structures: Edge Properties (2)

» Option 3: Single-indexed edge property lists

Fwd Lists Bwd Lists Fwd year Lists
1 b (es,va) | (e1,va) | (e3,v3) 1 > (e3,va) 1 {2003 - 2017
2 13 (e4,v4) 2 > (es,vq) 2 > 1995
3 (>null 3 P (e3,Vvq) 3 >null
4 1> (e5,v1) 4 P (e,vq) | (esvy) 4 13 2020

» Sequential reads in fwd direction.
» Can we get random backward access?
» Solution: edge ID scheme w/ list-level offsets
» E.g: eq: (edge label, srclD, list-offset), so e;: (KNOWS, v,, 2)
» Unlike columnar RDBMS, GDBMS physically store IDs/offsets
» Problem: deletions leave gaps; recycling list-level offsets is hard.

Final implementation is a variant of this data structure called
DSCi- Edge Property Pages that is more update friendly i

Example Compression Schemes: Null Compression (1)

» Desiderata 2: Require constant decompression time for vertex props.

» Existing schemes designed for sequential access [Abadi, CIDR 07]

» For random access: compute in O(1) the rank of positions in bitmap

» Solution: Enhance w/ Jacobson’s rank index [Jacobson, FOCS '89]

o Vo Vi V2 V3 V4 Vs Vg V7 Vg | Vg | Vio Vi1 V2 Viz Vg Vg5
original: 7|1-16]3]2 8 | 11 2 | 3
[| 1 1 1
bitmap: ojo|1[ofz]2[1]ofo[1]1]o]1]1]o]0 01 2 3
I

prefix sums: |0(1 4|6

nonNulls: 7163 2\8‘ 11213

t
?

value at pos 9 = nonNulls[4+1] = 8

0101 [(O|1(1(2
0110 [0 1|22
0111 (01|23

Bit pos-to-index map

17

Example Compression Schemes: Null Compression (2)

» LDBC100 w/ different NULL densities on creationDate column (220M)
MATCH (a:Person)-[e:LIKES]->(b:Comment)

RETURN b.creationDate

% Uncompressed @ J-NULL

N
[&)]

e
£ 2 o000
o @
@ o
(&)
S 15 / ¥
3 ¥ % N
o * 2 .*_*.*
& D
s 10| &
Q.
(@]
<
5 5
(0]
£
[em
2 0
0 25 50 75 100

Percentage of non-NULL values

Size of Column (in GB)

1.00

o
~
[&)]

0.50

o
)
o

0.00

M Vanilla-NULL

Y= e 1 Y =Y Y =Y Fyle =

25 50 75 100

Percentage of non-NULL values

Within 1.2x-1.5x of uncompressed; faster w/ density is <30%

Used to compress properties as well as empty lists in CSRs.

18

Outline

» List-based Query Processing

19

Traditional Block-based Processing on N-N Joins

Knows Knows WorkAt
MATCH @ @ '—»‘

WHERE a.age > 50 RETURN *

Knows
WorkAt

: many-to-one

[Scan H Extend H Extend J_w

a age | fmask
a 51 1
a, 19 0
a4 | 60 1

Problem 1: Value repetition (or selector indices) b/c 1 group of vectors is used

Problem 2: Fixed length blocks (e.g., 1024) which don’t align with adj. list sizes

: many-to-many with avg deg 512

C d fmask
Cq d1 1
Cy d, 1
Cs12 | dsio 1
Csy3 | dsi3 1
C1024 | d1024 1

20

List-based Processor (1)

» Factorization [Olteanu, SIGMOD Rec. ‘16]

a|age| b | c d

dq 51 b1 Cq dl d, dge b E,_d

a; | 51 | by | d, {a;, 51} | X' | {b4} X {[cy, di] [cy, dy] ...,

{Cs512, ds12]}

a; | 51 | by | Cs1o | ds1y Y

a; | 51 | b, | csq3 | dsys {ay, 51} | X | {ba} X {[cs13, ds13] [C514,
dsi4] ..., {C1024, d1024]}

a; | 51 | by | €024 | d1024

» List groups
» Represent intermediate tuples in multiple vector groups
» Variable-sized vectors aligned to adjacency lists

» Vectors storing node and edge IDs are pointers to lists in storage
D52 e 21

List-based Processor (2)

MATCH @Knows @ Knows Knows : many-to-many with avg deg 512
WorkAt : many-to-one

—_—

WHERE a.age > 50 RETURN *

Scan Extend Extend Extend
a b C d
t f t

List Group 1 List Group 2 List Group 3
a | age | fmask b | fmask C ﬁdhﬂllfumalsk
[[a, | 51 1 | b 1| Gy || dslis| |]| 22
a, | 19 0 b, 1 Gog || dellaf ||| 11
bs1, 1 Csa2s || Whbhd 11
curldx = 21 curldx = -1
a1024 | 60 1

curldx = 11

22

List-based Processor (3)

» Modified version of LDBC SNB Interactive Complex Read queries
» Scale Factor 10, 30M Vertices and 176.6M Edges

» 2.6GHz CPU, 512GB RAM, single threaded execution

» GF-RT: Graphflow w/ old row-based storage & tuple-at-a-time

Volcano processor

IC1 1IC2 IC4 IC5 IC6 |IC7 IC8 IC9 IC11 1C12
GF-LBP |[36.7 |32.4 131 1565.2 | 113.0 |3.0 2.6 1519 | 11.1 34.2

GF-RT 88.4 45.2 57.3 8925.0 | 333.1 6.3 7.0 2098 | 19.2 84.9
2.4x 1.4x 4.4x 5.7x 3.0x 2.1x 2.7 1.4x | 1.7x 2.5x

runtimes in seconds

Larger differences on queries with joins followed w/ aggregations

Larger differences w/ baseline column stores and Neo4j
D52 e 23

Other Techniques

» Other columnar data structures (e.g., one-many or one-one edges)

ID compression schemes

» More details on LBP

Data
Systems
Group

Integrating Column-Oriented Storage and Query
Processing Techniques Into Graph Database Management
Systems

Pranjal Gupta, Amine Mhedhbi, Semih Salihoglu
University of Waterloo

{pranjal.gupta, amine.mhedhbi, semih.salihoglu}@uwaterloo.ca

ABSTRACT
We revisit column-oriented storage and query processing
techniques in the context of contemporary graph database
management systems (GDBMSs). Similar to column-orien-
ted RDBMSs, GDBMSs support read-heavy analytical work-
loads that however have fundamentally different data ac-
cess patterns than traditional analytical workloads. We
first derive a set of desiderata for optimizing storage and
query processors of GDBMS based on the access patterns
in GDBMSs. We then present the design of columnar stor-
age, compression, and query processing techniques based on
these requirements. In addition to showing direct integra-
tion of existing techniques from columnar RDBMSs, we also
propose novel ones that are tailored for GDBMSs. These in-
clude a novel lst query processor, which avoids expen-
sive data copies of traditional block-based processors under
joins and avoids jalizing adjacency lists
in intermediate tuples, a new data structure we call single-
indexed edge property pages and an accompanying edge ID
scheme, and a new application of Jacobson’s bit vector in-
dex for compressing NULL and empty lists. We integrated
our techniques into the GraphflowDB in-memory GDBMS.
Through extensive experiments, we demonstrate the scala-
bility and performance benefits of our columnar storage and
the query performance benefits of our list-based processor.

INTRODUCTION

Contemporary GDBMSs are data management software
such as Neod; [7], Neptune [1], TigerGraph [12], and Graph-
flow [41, 48] that adopt the property graph data model [9].
In this model, application data is represented as a set of
vertices, which represent the entities in the application, di-
rected edges, which represent the relationships between en-
tities, and key-value properties on the vertices and edges.

GDBMSs have lately gained popularity to support a wide
range of analytical applications, from fraud detection and
risk assessment in fma.ncml services to recommendauom in
e-commerce and social networks applications
have workloads that seareh for pdttenla ina graph -structured
database, which often requires reading large amounts of
context of RDBMSs, column-oriented sys-

61] employ a set of read-optimized storage,
indexing, and query pro techniques to support tra-
ditional analytics apphc.mom such as business intelligence
and reporting, that also process large amounts of data. As

g

such, these columnar techniques are relevant for improving
the performance and scalability of GDBMSs.

In this paper, we revisit columnar storage and query pro-
cessing techniques in the context of GDBMSs. Specifically,
we focus on an in-memory GDBMS setting and discuss the
applicability of columnar storage techniques [55], compres-
sion schemes [14, 16, 63], and vector-based query process-
mg [1,, 24] for storing and accessing different components

tem. Even though analytical workloads that are
run on GDBMSs and those on column-oriented RDBMSs
exhibit many similarities, they have different fundamental
data access patterns. This calls for redesigning columnar
techniques in the context of GDBMSs. The contributions of
this paper are as follows.
Guidelines and Desiderata: We begin in Section 3 by ana-
lyzing the properties of data access patterns in GDBMSs.
For example, we observe that different components of data
stored in GDBMSs can have some structure and the order
in which operators access vertex and edge properties often
follow the order of edges in adjacency lists. This analysis
instructs a set of guidelines and desiderata for designing the
physical data layout and query processor of a GDBMS.
Columnar Slmugu Section 4 explores the application ol
columnar structures for storing different components of
GDBMSs. While exist ing columnar structures can dxmntly
be used for storing vertex properties and many-to-many (n-
n) edges, we observe that using a straightforward columnar
structure, which we call edge columns, to store properties
of n-n edges is suboptimal as it does not guarantee sequen-
tial access when reading edge properties in either forward or
backward directions. An alternative, which we call double-
indezed property CSRs, can achieve sequential access in both
directions but requires duplicating edge properties, which
can be undesirable as graph-structured data often contain
orders of magnitude more edges than vertices. We then
scribe an alternative design point, single-dircctional property
pages, that avoids duplication and achieves good locality
when reading properties of edges in one direction and still
guarantees random access in the other when using a new
edge ID scheme that we describe. Our new ID schemes allow
for extensive compression when storing them in adjacency
lists without decompression overheads. Lastly, as a new ap-
plication of vertex columns, we show that single cardinality
edges and edge propen.les ice. those with one-to-one (- 1),

y (1-n) o (n-

wtored more efficiently with vertos columas instead of the
structures we described above for properties of n-n edges.
Columnar Compression: In Section 5, we review existing

Find on arXiv next Monday

24

References on GraphflowDB

Graphflow: An Active Graph Database

Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, Semih Salihoglu
'School of Computer Science, University of Waterioo
faterioo, Ontario, Canada

waterooca,
e

ABSTRACT
N s dc e e of ceainsub
e i gt oty e -t
Ctes

Graptlow’s query processr arc opi
bl oaei Join o e Deka o lm-ﬂx..

ateroo.ca, semin salinogu@uwaterioo.ca

A

w0 jobs 3, a5 repeescots hat 3, depends 0 3 and an;
e 1 3 o8 et . et 1 o . T

1. INTRODUCTION

sttt e dcly ooty in o s dovr.
s query would conespond 1. cotinoous it qucry.

Evalusing subgraph queris, ic. findi

such as Neos (5 and OrcntDB (7] only suppert one-time b
e

puts. Alermative

onc can mode graphs as eltiona] s, ex
maitained views and use

aph il

complcion. Hoevr, o
g ggers woukd simply spplcatons 3
e deccting 3 subgrph i delcgted o the
Example 1 Tuiners dasbase. However -
shown in g 1a, in
it o obovsabes g The i g o, 04 el 2 ngags o progh dabuses T kol o
sists of 4 uscr 2, Who ollows (w0 separae ser o5 nd a5, who OUS QUry sppert by cxistng praph datahass

-

Mo emmens it o1 o follow o, b w0
ser that s fllowing ar intrestedin

example, MagicRecs i specialized only o detct the dismond b
araph An active graph datahase that supports geeralcontinuous

Example 2 Consider
s npot ransoctions graph. I the graph. ndividual customers
e and o

We demonsrae Graphlo, an active gaph database that sup-

2 indicates

+ter of ey 1 00

mpnd s cmtmmrce e vt oy v

n cuample e
B Comi s e g cin i

g

o er g componcs, G e g g, vl
s T s copot gt

nlly e syse's qury Py

o it cal Genric Joy 64 o s ncrementl

o e) g) e e e A

2. GRAPHFLOW SYSTEM

Graph-
e ——— Bowis singlenode in-memory syt in Java There
© 207 ACM ISR 7S 103974178 S350 e fou i compoacats of 0 ysen (1) nmerory
oo query language, which extends

Demo
SIGMOD 2017

Data
Systems
Group

Optimizing One-time and Continuous Subgraph Queries
using Worst-Case Optimal Joins

AMINE MHEDHBI, University of Waterloo
CHATHURA KANKANAMGE, University of Waterloo
SEMIH SALIHOGLU, University of Waterloo

join plans, by
intersections. The core problem in optimizing worst-case optimal plans is to pick an ordering of the query
vertices to match. We make two main contributions:

LA

& vertex
‘orderings for worst-case optimal plans; and (i) generates hybrid plans that mix raditional binary joins
with optimizer,

the plan spaces based on tree decompositions from prior work.

24
Given. pu hes bgraph
ks a plan for the
queries. o the plans for the
for
hybrid plans, our dynamic for. with the
cost of binary joins. i ique,

pu
CCS Concepts: « Information Systems — DBMS engine architectures: Query Planning: Join Algorithms.
‘Additional Key Words and Phrases: Subgraph queries, worst-case optimal joins, Generic Join

ACM Reference Format:

Amine Mhedhbi, Chathura Kank d Semih Salihoglu. 2021 and Conti
Subgraph Queries using Worst-Case Optimal Joins. ACM Trans. Datab. Syst. 1, 1, Atticle | (January 2021),
45 pages. hups//doi.org/10.1145/3446980.

Authors’ addresses: Amine Mhedhbi, University of Waterloo, amine.mhedhbi@uwaterloo.c:
Chathura Kankanamge, University of Waterloo, c2kankan@uwaterloo.ca; Semih Salihoglu, Univer-
sity of Waterloo, semih.salihoglu@uwaterloo.ca.

Pecmisrlon o ke digal o Rae copies ofal) o pat o 4wk fo peconl ox clasaroem use
is granted without fee provided that copies are not made or distributed for profit or co al

‘components of this work owned by

permitted. To copy otherwise, or republish, to post on servers or to redistribute 10 lsts, requires prior
s ooy e, Baquest permini o

©2021 Association for Computing Machinery.

0362-5915/2021/1-ART1 $15.00

huups:/doi.org/10.1145/3446980

Worst-case Opt. Joins

VLDB 2019
TODS 2021

Gra
o

arXiv:2004.00130v3 [cs.DB] 15 Oct 2020

A+ Indexes: Tunable and Space-Efficient Adjacency
Lists in Graph Database Management Systems

Anine Mhedbti, Pl Gupta,Shaid Kislig Semih Saibogha

i School of Computer Science, University of W
prasjal gupta, shahid Khalq,
sgement systems (GDRMSS) major shorcoming of cxising GIBMSs is that sysiems

Abotact— Graph database mans
e highly oplimired o perform Gt traversb, ie. joins of
e with hee neighbburs, Y imdcsing the eighiourhoods
of vetices in adjacency [ists. However, cxsing GDBMSs huve
i o sy I s, i s
cuch system eficent on- only oad.
e s ol inenng ..-.w.,,.. o G (;nnm‘;\ we
ndexes, with fem

itfrom bt i s shout o prtioni xmmlg

iteci of thei y hi
Lighy elicien on nly facd v ereates
physica wence, as users have o model their dat,

and sorting crteia of thei systems.

i o Waariaed view e Ecane s o s
he souree o destination vertex T an () edgo-partiioned
e parcon Zop vews o Wmuy s o ome

he e 1D, Ax in cxivting GDEVISs, u sysem by defuull

We uddress the How can the fast join

capabilies of GDBMSs be e much wider set of

warkloads? We describe 3 tunahle and space-eficient ndexing

subsystem for GDBMSs that wo call A+ indeses. Ou indexing.
c dex and optionsl

Tt ey T e G oo e iy
index o secondary indexes by st
soring creri. Gur second

& critera. Gur secondry i
e e i
‘wider range of applications t beneftfrom GDEMSS
Capabitiie. mmmmm iy s s eftcioncy
"N+ indexes through exiemsive experiments an three worklods.

1. IvtRoDLCTION
The tecm graph database management sysiem (GDBMS) i its:
contemporary usage refers (o daa management software such s
Neodj [1], JansGraph [2], TeceGraph [3], and Grapbflow [4.
15t adop e rspey gt model 6. I s ol
o r s by s, el e represened

of a primary

indexes that wsers can busld. This i similr to reltional systemns
index relarins in a prims

Koy columas 4 well 41 opdonl sconcay st on ot

‘At indexes are the defuul indexes that store

.u e e ecords i 4 databas. Unlke xisting GDMDS.

systems und. A e, b gobl viow i vl
view that contins all f the cdges n the graph. Thersfor,
way a GDBMS can support an even wider range of wmkhvldv
i b ndeing s views ety
A dum

o sk s ke s it o b
for some views,

Tnstead of extending our system with general view functional-
ity ous next contribution carefully identiles two sets of global
views that can be. iy sp A manner

tend the
. cach list
siores st of st e sacent 0.0 i g Thss
o sets of views and

worst-case optimal (WCO) join algoritams [9]. However, 4

e th e il T o e e I sy A

A+ Indexes
ICDE 2021

phflow

Coli Oriented St

and Query

P i Into Graph D:
Systems
Pranjal Gupta, Amine Mhodnbi, Semih Salihoglu
versty of Wate
amma.mhﬂdhb:, u-mm
W s it g and

- Str 6
1< upport o s il e

indexad odgs

in umvwnlmh mm.- a me
> pogen nd
wcheme, 48 w applkation of s
N

e o expeiot, e deenatrte 6 s

u BAISs AISe
it many nlxmhmlw ey b mdn o Tl
e T o colmons

e contibutionsof

e ton 3 by an
g, the properties of data access patterna in GDBASs,
i smponenta of

e

ey Tt Th s

nstructs o et of gudelines and desderata for designing the
A daa yout and ery procemsr of GBS

Cotumnar Storpe Section 1 <xplres the applicaton of

ity and
the query performance benefits of our lst-based processor.
1. INTRODUCTION

Contmprsy GDBNS e dtn matagment st
e], Neptune 1] caph
ow m it wdort e bropery ol e i

n oo Ltary gained popuilriy to support & wide
nge of analyica applcsions, from fraud detecion

Casssement n fnancial serviees 10 recommendations in
-commerce and social networks [54). These application
e ko o eiteen g rctued
database, which often requires reading large smounts of
s o T ot o KD o orened sy

GDBMSs. While existing coluranar structures can direely

bl s g it dte e "contain
onder of magitude moe ode o then
b lernive dsin o, mw i oty
s ks il

g

]

e D sheme that o dsc
for i compremion whe soin ther n ey

(10,
imiumg, & ey g e 10 sppot
ditonal saaly ations, such as busines inelligence
o repoin s e s s f dne

lta without nads. Lastly,as ew -
eion of vk coomn e show s s ooy
dge pr

ol opertios, e those with one-to-one (1-1),
o oy one () cardaies, e
ored more fickotly ex column of the
n ‘

ure wo describad above o properies of . s
i Compression: In Secton 5, we review exiating

Columnar Techniques

(arXiv 2021)

25

How Are Graphs and GDBMSs Used In Practice?

A User Surve
Sahu et. al. VLDBJ 19 2019

‘The VLDB Journal (2020) 29:595-618
https://doi.org/10.1007/500778-019-00548-x

SPECIAL ISSUE PAPER o')

Check for
Updates

The ubiquity of large graphs and surprising challenges of graph
processing: extended survey

Siddhartha Sahu'(® - Amine Mhedhbi' - Semih Salihoglu' - Jimmy Lin' - M. Tamer Ozsu’

» Q1:
» Q2:
» Q3:

raph Data?

Received: 21 January 2019 / Revised: 9 May 2019 / Accepted: 13 June 2019 / Published online: 29 June 2019
©Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Graph processing is becoming increasingly prevalent across many application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (i) the graph computations users run; (ii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants® responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, ility and visualization are iably the
most pressing faced by partici and data i i and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

raph Computations?

raph Software?

Keywords User survey - Graph processing - Graph databases - RDF systems

<= O O ®

1 Introduction prevalence of work on graph processing both in research and u
in practice, evidenced by the surge in the number of different L)
Graph data representing connected entities and theirrelation- commercial and research software for managing and pro- . H
ships appear in many application domains, most naturallyin cessing graphs. Examples include graph database systems
social networks, the Web, the Semantic Web, road maps, [13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
communication networks, biology, and finance, just toname bra software [17,63], visualization software [25,29], query
a few examples. There has been a noficeable increase in the languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of . .
Electronic supplementary material The online version of this article publications that study numerous topics related to graph pro- -
supplementary material, which is available to authorized users.
venues. L] L
50 Siddhartha Sahu Despite their prevalence, there is little research on how

s3sahu@uwaterloo.ca
Amine Mhedhbi
amine.mhedhbi@uwaterloo.ca
Semih Salihoglu
semih.salihoglu@uwaterloo.ca
Jimmy Lin
jimmylin@uwaterloo.ca

M. Tamer Ozsu
tamer.ozsu@uwaterloo.ca

University of Waterloo, Waterloo, Canada

Data
Systems
Group

graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?

(if) What computations do users run on their graphs?

(ifi) Which software do users s to perform their computa-
tions?

) Springer

26

Students

Amine Gudng

Jin

.! :)

rosTSOV]S ?

Siddhartha ~ Shahid * Chathura
Sahu Khaliqg Kankanamge ,,

Thank you & Questions?

