Aggregation Support for Modern

Graph Analytics in TigerGraph

Alin Deutsch
UCSD faculty & TigerGraph Chief Scientist

The Age of the Graph Is Upon Us (Again)

Mid-Late 90s: semi-structured research was all the rage

— data logically viewed as graph

— initially motivated by modeling WWW (page=vertex, link=edge)
— query languages expressing constrained reachability in graph

Late 90s-late 2000s: special case XML (graph restricted to tree)

— Mature: W3C standard ecosystem for modeling and querying (XQuery,
XPath, XLink, XSLT, XML Schema, ...)

Since mid 2000s: JSON and friends (also restricted to tree shape)
— Mongodb, Couchbase, SparkSQL, GraphQL, AsterixDB, ...

Present: back to unrestricted graphs
— Cypher, Gremlin, SparQL, more recently TigerGraph’s GSQL
— Two ANSI/ISO standards coming up: SQL/PGQ extension & GQL

The Traditional Graph Data Model

Nodes correspond to entities
e Edges correspond to binary relationships

 Edges may be undirected or directed
(modeling asymmetric, resp. symmetric relationships)

* Nodes and edges may be labeled/typed

* Nodes and edges annotated with data
— both have sets of attributes, aka properties (key-value pairs)

Example: Customers Buy Products

customer product

discount quantity

Key Language Ingredients Required by

Modern Applications

— All primitives inherited from classical academic work

(first prototypes as early as 1987)
* path expressions + variables + conjunctive patterns
+ node/edge construction (de facto standard, soon de jure)
[not the focus of this talk]

&

— Support for large-scale graph analytics
» Aggregation of data encountered during navigation
* Control flow support for algorithms that iterate to convergence
— PageRank-class, recommender systems, shortest paths, etc

[this talk]

Aggregation

Aggregation in Modern Graph QLs

e Conventional (SQL-style):
— Compute table of pattern matches, next partition it into groups
— PGQL, Gremlin and SparQL use explicit GROUP BY clause

— Cypher’s implicit GROUP BY has same syntax as aggregation-extended
conjunctive queries

e GSQL (TigerGraph’s QL): alternate paradigm based on aggregating
containers called “accumulators”
— advantages for both naturality of specification and performance

— (recently added conventional style as syntactic sugar, but accumulators
remain strictly more versatile)

GSQL Accumulators

e GSQL traversals collect and aggregate data by writing it into
accumulators

* Accumulators are containers that
— hold a data value
— accept inputs
— aggregate inputs into the data value using a binary operator

* May be built-in (sum, max, min, etc.) or user-defined

 May be
— global (a single container per query)
— vertex-attached (one container instance per vertex)

Vertex-Attached Accumulator Example:

Revenue per Customer and per Product

customer product

discount quantity

thisSaleRevenue

Vertex-Attached Accumulator Example:
Revenue per Customer and per Product

Vertex-Attached Accumulator Example:

Revenue per Customer and per Product

SumAccum<float> @cSales, @pSales;
i ccumistor declaration
SELECT c

FROM Customer: c —(Bought: b)-> Product: p
ACCUM thisSaleRevenue = b.quantity*(1-b.discount)*p.price,
c.@cSales += thisSaleRevenue,

p.@pSales += thisSaleRevenue; W

same sale revenue contributes

to two aggregations, each by
distinct grouping criteria

groups are distributed, each node
accumulates its own group

Recommended Toys Ranked by

Log-Cosine Similarity

SumAccum<float> @rank, @Ic;
SumAccum<int> @inCommon;

Me = {Customer.1};

SELECT p INTO ToyslLike, o INTO OthersWholLikeThem
FROM Me:c -(-Likes->)- Product:p -(<-Likes-)- Customer:o
WHERE p.category == “Toys” and o I=c

ACCUM o.@inCommon +=1

POST-ACCUM o.@Ic=log (1 + o.@inCommon);

SELECT t INTO ToysTheylLike

FROM OthersWholikeThem:o —(Likes)-> Product:t
WHERE t.category == "toy"

ACCUM t.@rank +=o0.@Ic;

RecommendedToys = ToysTheyLike — ToyslILike;

Benefits of Accumulator-based Aggregation

(Transcend Graph Model)

* It subsumes SQL-style aggregation
— just implemented SQL’'s GROUP BY as syntactic sugar

» Specifies queries whose evaluation is naturally parallelizable

» Facilitates specification of single-pass multi-aggregation (by
different grouping criteria)
— currently unsupported in GQL 1.0 standard draft or other graph QLs
— only partially supported even in SQL:

— Its most sophisticated aggregation primitives (PARTITION OVER, CUBE,
ROLLUP) result in wasteful aggregation (may compute more
aggregates than user wants)

— Experiments show up to 3x speedup of accumulator-based over
conventional (SQL-style) aggregation (see SIGMOD 2020 paper)

Control Flow Primitives

Loops Are Essential

* Loops (until condition is satisfied)

— Necessary to program iterative algorithms, e.g. PageRank,
recommender systems, shortest-path, etc.

— They synergize with accumulators. This GSQL-unique combination
concisely expresses sophisticated graph algorithms

e within the language!
— no need to modify built-in algorithms programmed in Java/C++/Python...

— Can be used to program unbounded-length path traversal under
various semantics

PageRank in GSQL

CREATE QUERY pageRank (float maxChange, int maxlteration, float dampingFactor) {

MaxAccum<float> @ @maxDifference = 9999; // max score change in an iteration

SumAccum<float> @received_score = 0; // sum of scores received from neighbors
SumAccum<float> @score = 1; // initial score for every vertex is 1.
AllV = {Page.*}; // start with all vertices of type Page

WHILE @ @maxDifference > maxChange LIMIT maxlteration DO
@ @maxDifference = 0;

S= SELECT S
FROM AllV:s -(Linkto)-> :t
ACCUM t.@received_score +=s.@score/s.outdegree()

POST-ACCUM s.@score = 1-dampingFactor + dampingFactor * s.@received_score,
s.@received_score =0,
@ @maxDifference += abs(s.@score - s.@score');
END;

}

Exploring the Design Space for

Aggregation Semantics

Aggregation Requires Bag Semantics, which

Clashes with Finiteness

Common graph analytics need to aggregate data
— e.g. count the number of products two customers like in common

Set semantics (the tradition in academic work) does not suffice
— baked-in duplicate elimination affects the aggregation

As in SQL, in practice systems resort to bag semantics

BUT they encounter a new, graph QL-specific challenge:
— Bag semantics clashes with finiteness of query answer

Multiplicity of s-t pair in query output reflects number of distinct
paths connecting s with t

— Even in acyclic graphs, can be exponentially many (in the graph size!)
— Worse: in cyclic graphs, can be infinitely many

The Chain-of-Diamonds Graph

Ensuring Finite Query Results in

State of the Art: Restricting Legal Paths

No restriction
— non-terminating queries possible (Gremlin)

No repeated nodes, aka simple paths (Gremlin tutorial examples)
— Aggregation-friendly, intractable (existence of simple path is NP-hard)

No repeated edges, aka trails (Cypher default semantics)
— Aggregation-friendly, intractable

Transitive closure patterns as Boolean reachability tests (SparQL)
— Aggregation-unfriendly, tractable

Shortest paths (TigerGraph default semantics)
— Aggregation-friendly, tractable

Aggregation-Friendly but Intractable Designs:

Restrict Cycle Traversal

* No repeating vertices (simple paths)
— Rules out paths that go around cycles

— Recommended in Gremlin style guides, tutorials, formal
semantics paper

— Gremlin’s simplePath () predicate supports this semantics

— Problem: membership of s-t pair in result is intractable
(NP-hard)

* No repeating edges (trails)
— Allows cyclic paths
— Rules out paths that go around same cycle more than once
— This is the default Cypher semantics
— Problem: membership of s-t pair in result still NP-hard

Tractable Yet Aggregation-Unfriendly:

Mix Bag and Set Semantics

Bag semantics for star-free fragments of PE

Set semantics for Kleene-starred fragments of PE
This is the semantics of the SparQL WC3 standard
Tractable complexity but aggregation-unfriendly

Example:
a.b*.c

b

C
b
multiplicity of (s,t) in answer is 1, as if there were only

one path connectingstot
= path counting, or aggregating data from the path
meaningless

Aggregation-Friendly & Tractable:

Shortest Paths

* For pattern
x —(PE)-> y,
vertex pair (s,t) is a match iff there is a path p from s to t such that

— PE matches p, and
— pis shortest among all matching paths fromstot

e Multiplicity of (s,t) in result is the count of all shortest paths

e Default semantics in GSQL (as of TG 2.4)

Contrasting Semantics

e pattern E* over graph:

* s-tis an answer under all semantics, but
— Unrestricted paths: s-t has multiplicity infinite (Gremlin)
— Simple-path: s-t has multiplicity 3 (Gremlin recommended)
— Unique-edge: s-t has multiplicity 4 (Cypher)
— Shortest-path: s-t has multiplicity 2 (GSQL)

Accumulators + Shortest Paths =

Performance (Computational Complexity)

Two well-known facts:

* Can count shortest paths in polynomial time, even exponentially
many, because no need to materialize them

 Same holds for paths satisfying a path expression

= A key fragment of GSQL (covering a majority of TG’s use cases)
has PTIME data complexity

Restriction:

— do not bind variables to entire paths
— do not bind variables in scope of Kleene star
— do not use List and String accumulators

Proof sketch in SGMOD 2020 paper

Accumulators + Shortest Paths =

Performance (Experiments)

» afamily of DAGs with exponential number of paths between source and sink

e query counts these paths

* non-repeated edge and shortest-path semantics coincide

* increasing graph size, we measured running time and observed
— exponential trend for non-repeated-edge evaluation

 reference system for trail semantics Neo4j (timeout at 10 minutes for
chain of 25 diamonds),

— linear trend for shortest-path evaluation
 TigerGraph (all runs within a few tens of ms)

IELGEVYEL

* flexible aggregation via accumulators yields
expressive power (conciseness, naturalness of specification)
and
performance (due to support for parallel one-pass multi-
aggregation, and for iterative algorithms)

e accumulators + shortest-paths semantics
yields large tractable GSQL fragment

Looking Ahead

Due to its control primitives and accumulators, GSQL is Turing
complete

Will achieve conformance to standard by translating to GSQL

Will continue to maintain a library of graph algorithms
implemented in GSQL (standard GQL not expressive enough)

=> users can tweak them, no need to go to lower-level languages

TigerGraph sits on both standard working groups and is an active
contributor. Two-way street:

— GSQL is influencing the standards and in turn it is evolving to align

Thank You!

