
Aggregation Support for Modern
Graph Analytics in TigerGraph

Alin Deutsch
UCSD faculty & TigerGraph Chief Scientist

The Age of the Graph Is Upon Us (Again)

• Mid-Late 90s: semi-structured research was all the rage
– data logically viewed as graph
– initially motivated by modeling WWW (page=vertex, link=edge)
– query languages expressing constrained reachability in graph

• Late 90s-late 2000s: special case XML (graph restricted to tree)
– Mature: W3C standard ecosystem for modeling and querying (XQuery,

XPath, XLink, XSLT, XML Schema, …)

• Since mid 2000s: JSON and friends (also restricted to tree shape)
– Mongodb, Couchbase, SparkSQL, GraphQL, AsterixDB, …

• Present: back to unrestricted graphs
– Cypher, Gremlin, SparQL, more recently TigerGraph’s GSQL
– Two ANSI/ISO standards coming up: SQL/PGQ extension & GQL

The Traditional Graph Data Model

• Nodes correspond to entities

• Edges correspond to binary relationships

• Edges may be undirected or directed
(modeling asymmetric, resp. symmetric relationships)

• Nodes and edges may be labeled/typed

• Nodes and edges annotated with data
– both have sets of attributes, aka properties (key-value pairs)

Example: Customers Buy Products

customer product

bought

discount quantity pricename

Key Language Ingredients Required by
Modern Applications

– All primitives inherited from classical academic work
(first prototypes as early as 1987)
• path expressions + variables + conjunctive patterns

+ node/edge construction (de facto standard, soon de jure)
 [not the focus of this talk]

&
– Support for large-scale graph analytics

• Aggregation of data encountered during navigation
• Control flow support for algorithms that iterate to convergence

– PageRank-class, recommender systems, shortest paths, etc
 [this talk]

Aggregation

Aggregation in Modern Graph QLs

• Conventional (SQL-style):
– Compute table of pattern matches, next partition it into groups
– PGQL, Gremlin and SparQL use explicit GROUP BY clause
– Cypher’s implicit GROUP BY has same syntax as aggregation-extended

conjunctive queries

• GSQL (TigerGraph’s QL): alternate paradigm based on aggregating
containers called “accumulators”
– advantages for both naturality of specification and performance
– (recently added conventional style as syntactic sugar, but accumulators

remain strictly more versatile)

GSQL Accumulators

• GSQL traversals collect and aggregate data by writing it into
accumulators

• Accumulators are containers that
– hold a data value
– accept inputs
– aggregate inputs into the data value using a binary operator

• May be built-in (sum, max, min, etc.) or user-defined

• May be
– global (a single container per query)
– vertex-attached (one container instance per vertex)

Vertex-Attached Accumulator Example:
Revenue per Customer and per Product

customer product

bought

discount quantity price

@cSales
@pSales

thisSaleRevenue

Vertex-Attached Accumulator Example:
Revenue per Customer and per Product

@cSales

@cSales

@pSales

@pSales

@pSales

+
+

Vertex-Attached Accumulator Example:
Revenue per Customer and per Product

SumAccum<float> @cSales, @pSales;

SELECT c

FROM Customer: c –(Bought: b)-> Product: p

ACCUM thisSaleRevenue = b.quantity*(1-b.discount)*p.price,

 c.@cSales += thisSaleRevenue,

 p.@pSales += thisSaleRevenue;

accumulator declaration

groups are distributed, each node
accumulates its own group

same sale revenue contributes
to two aggregations, each by

distinct grouping criteria

Recommended Toys Ranked by
Log-Cosine Similarity

SumAccum<float> @rank, @lc;
SumAccum<int> @inCommon;

Me = {Customer.1};

SELECT p INTO ToysILike, o INTO OthersWhoLikeThem
FROM Me:c -(-Likes->)- Product:p -(<-Likes-)- Customer:o
WHERE p.category == “Toys” and o != c
ACCUM o.@inCommon += 1
POST-ACCUM o.@lc = log (1 + o.@inCommon);

SELECT t INTO ToysTheyLike
FROM OthersWhoLikeThem:o –(Likes)-> Product:t
WHERE t.category == "toy"
ACCUM t.@rank += o.@lc;

RecommendedToys = ToysTheyLike – ToysILike;

Benefits of Accumulator-based Aggregation
(Transcend Graph Model)

• It subsumes SQL-style aggregation
– just implemented SQL’s GROUP BY as syntactic sugar

• Specifies queries whose evaluation is naturally parallelizable

• Facilitates specification of single-pass multi-aggregation (by
different grouping criteria)
– currently unsupported in GQL 1.0 standard draft or other graph QLs
– only partially supported even in SQL:
– Its most sophisticated aggregation primitives (PARTITION OVER, CUBE,

ROLLUP) result in wasteful aggregation (may compute more
aggregates than user wants)

– Experiments show up to 3x speedup of accumulator-based over
conventional (SQL-style) aggregation (see SIGMOD 2020 paper)

Control Flow Primitives

Loops Are Essential

• Loops (until condition is satisfied)

– Necessary to program iterative algorithms, e.g. PageRank,
recommender systems, shortest-path, etc.

– They synergize with accumulators. This GSQL-unique combination
concisely expresses sophisticated graph algorithms
• within the language!
 → no need to modify built-in algorithms programmed in Java/C++/Python…

– Can be used to program unbounded-length path traversal under
various semantics

PageRank in GSQL

CREATE QUERY pageRank (float maxChange, int maxIteration, float dampingFactor) {

 MaxAccum<float> @@maxDifference = 9999; // max score change in an iteration
 SumAccum<float> @received_score = 0; // sum of scores received from neighbors
 SumAccum<float> @score = 1; // initial score for every vertex is 1.

 AllV = {Page.*}; // start with all vertices of type Page
 WHILE @@maxDifference > maxChange LIMIT maxIteration DO
 @@maxDifference = 0;

 S= SELECT s
 FROM AllV:s -(Linkto)-> :t
 ACCUM t.@received_score += s.@score/s.outdegree()
 POST-ACCUM s.@score = 1-dampingFactor + dampingFactor * s.@received_score,
 s.@received_score = 0,
 @@maxDifference += abs(s.@score - s.@score');
 END;
}

Exploring the Design Space for
Aggregation Semantics

Aggregation Requires Bag Semantics, which
Clashes with Finiteness

• Common graph analytics need to aggregate data
– e.g. count the number of products two customers like in common

• Set semantics (the tradition in academic work) does not suffice
– baked-in duplicate elimination affects the aggregation

• As in SQL, in practice systems resort to bag semantics

• BUT they encounter a new, graph QL-specific challenge:
– Bag semantics clashes with finiteness of query answer

• Multiplicity of s-t pair in query output reflects number of distinct
paths connecting s with t
– Even in acyclic graphs, can be exponentially many (in the graph size!)

– Worse: in cyclic graphs, can be infinitely many

The Chain-of-Diamonds Graph

Ensuring Finite Query Results in
State of the Art: Restricting Legal Paths

• No restriction
– non-terminating queries possible (Gremlin)

• No repeated nodes, aka simple paths (Gremlin tutorial examples)
– Aggregation-friendly, intractable (existence of simple path is NP-hard)

• No repeated edges, aka trails (Cypher default semantics)
– Aggregation-friendly, intractable

• Transitive closure patterns as Boolean reachability tests (SparQL)
– Aggregation-unfriendly, tractable

• Shortest paths (TigerGraph default semantics)
– Aggregation-friendly, tractable

Aggregation-Friendly but Intractable Designs:
Restrict Cycle Traversal

• No repeating vertices (simple paths)
– Rules out paths that go around cycles
– Recommended in Gremlin style guides, tutorials, formal

semantics paper
– Gremlin’s simplePath () predicate supports this semantics
– Problem: membership of s-t pair in result is intractable

(NP-hard)

• No repeating edges (trails)
– Allows cyclic paths
– Rules out paths that go around same cycle more than once
– This is the default Cypher semantics
– Problem: membership of s-t pair in result still NP-hard

Tractable Yet Aggregation-Unfriendly:
Mix Bag and Set Semantics

• Bag semantics for star-free fragments of PE
• Set semantics for Kleene-starred fragments of PE
• This is the semantics of the SparQL WC3 standard
• Tractable complexity but aggregation-unfriendly

• Example:
 a.b*.c

 multiplicity of (s,t) in answer is 1, as if there were only
 one path connecting s to t

⇒ path counting, or aggregating data from the path
 meaningless

a b

b

b

b

bb c
s t

Aggregation-Friendly & Tractable:
Shortest Paths

• For pattern

x –(PE)-> y,

vertex pair (s,t) is a match iff there is a path p from s to t such that

– PE matches p, and
– p is shortest among all matching paths from s to t

• Multiplicity of (s,t) in result is the count of all shortest paths

• Default semantics in GSQL (as of TG 2.4)

Contrasting Semantics

• pattern E* over graph:

 s t

• s-t is an answer under all semantics, but
– Unrestricted paths: s-t has multiplicity infinite (Gremlin)
– Simple-path: s-t has multiplicity 3 (Gremlin recommended)
– Unique-edge: s-t has multiplicity 4 (Cypher)
– Shortest-path: s-t has multiplicity 2 (GSQL)

E E E

E E E E

EE
E E

EE

E

Accumulators + Shortest Paths =
Performance (Computational Complexity)

Two well-known facts:
• Can count shortest paths in polynomial time, even exponentially

many, because no need to materialize them

• Same holds for paths satisfying a path expression

⇒ A key fragment of GSQL (covering a majority of TG’s use cases)
 has PTIME data complexity

 Restriction:
– do not bind variables to entire paths
– do not bind variables in scope of Kleene star
– do not use List and String accumulators

 Proof sketch in SGMOD 2020 paper

Accumulators + Shortest Paths =
Performance (Experiments)

• a family of DAGs with exponential number of paths between source and sink

• query counts these paths
• non-repeated edge and shortest-path semantics coincide
• increasing graph size, we measured running time and observed

– exponential trend for non-repeated-edge evaluation
• reference system for trail semantics Neo4j (timeout at 10 minutes for

chain of 25 diamonds),
– linear trend for shortest-path evaluation

• TigerGraph (all runs within a few tens of ms)

Takeaway

• flexible aggregation via accumulators yields

 expressive power (conciseness, naturalness of specification)
 and

 performance (due to support for parallel one-pass multi-
 aggregation, and for iterative algorithms)

• accumulators + shortest-paths semantics
yields large tractable GSQL fragment

Looking Ahead

• Due to its control primitives and accumulators, GSQL is Turing
complete

• Will achieve conformance to standard by translating to GSQL

• Will continue to maintain a library of graph algorithms
implemented in GSQL (standard GQL not expressive enough)

=> users can tweak them, no need to go to lower-level languages

• TigerGraph sits on both standard working groups and is an active
contributor. Two-way street:
– GSQL is influencing the standards and in turn it is evolving to align

Thank You!

