

Vectorized Query Processing over encrypted data

MSc Research Project

Sam Ansmink (sam@cwi.nl)

Supervisor: Peter Boncz (VU, CWI) Second reader: Marc Makkes (VU)

University of Amsterdam

Query processing on encrypted data

Paradigm shift: cloud computing

- Secure outsourced databases
- First described in 2002⁽¹⁾

New threat model

- Untrusted server
 - Curious cloud providers
 - Malicious governments
 - Compromised cloud infrastructure
- Trusted client

Query processing on encrypted data

Operate directly on encrypted data

- Homomorphic encryption
- Property preserving encryption
- Searchable encryption
- Secure multiparty computation

Create a trusted "zone" on the untrusted server

- Secure Coprocessor (SCPU), FPGA
- Intel SGX, ARM Trustzone, AMD SEV, Microsoft VBS

Query processing on encrypted data

Operate directly on encrypted data

- Homomorphic encryption
- Property preserving encryption
- Searchable encryption
- Secure multiparty computation

Create a trusted "zone" on the untrusted server

- Secure Coprocessor (SCPU), FPGA
- Intel SGX, ARM Trustzone, AMD SEV, Microsoft VBS

Existing literature on EDBMS

Trusted Execution Environment (TEE)

- OLTP: StealthDB⁽²⁾, EnclaveDB⁽³⁾, SQL Server AEv2⁽⁴⁾
- OLAP: Opaque⁽⁵⁾, ObliDB⁽⁶⁾, EncDBDB⁽⁷⁾

Our contribution

- Use of vectorized query engine
- Focus on high efficiency

Research goal

Design EDBMS prototype

- DuckDB and Intel SGX
- Vectorized query execution
- Focus on minimizing overhead

DuckDB

Query execution models

Tuple-at-a-time

Vectorized

- Hardware enforced "enclaves"
- Split codebase (secure/unsecure)
- Split data (secure/unsecure)

Performance cost of Intel SGX

Limited secure memory

- ~172MB on 10th gen Intel
- ~96MB on 6th 9th gen Intel

Performance critical factors

- Secure memory paging
- Enclave-mode entry/exit (~ 1000 16000 cycles)
- Access to secure memory (CPU cache misses)

Overhead of decryption

Storage cost

- Extra data to store (e.g. initialization vector)
- Encrypted data has poor compression

Computational cost

• Depends strongly on buffer size

Overhead of decryption

SGX-based EDBMS design

Vectorized execution matches requirements well

- No large materialization
- Easily amortize encryption overhead
- Prevent excessive enclave entries

SGX-based DBMS design

Which parts to run in enclave?

Image source: StealthDB⁽¹⁾

Two designs tested

Model 1: Graphene SGX

- Using Graphene-SGX
- Whole DBMS in enclave

Model 2: SGX SDK

- Using SGX SDK
- Operators in enclave

Baseline Encrypted Implementation

Encrypted Scan

- Data encrypted per vector
- Decryption in scan operator
- Fixed length data-types only (no strings yet)

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink

Results: Overview

Results: Impact of vector size

Results: Graphene-SGX

Results: Effect of compression

- Compressed execution
- Compression ratio: 3x
- SGX SDK implementation suffers from extra enclave entries

- Vectorized execution fits SGX model well
- Low overhead encrypted query processing
- Both models analyzed are feasible

Future work

- Support (efficient) joins
- Support string data (see encDBDB⁽⁷⁾)
- Oblivious execution (see $ObliDB^{(6)}$)
- Other TEEs (e.g. ARM Trustzone)

- (1) Hacigümüş, Hakan, et al. "Executing SQL over encrypted data in the database-service-provider model." *Proceedings of the 2002 ACM SIGMOD international conference on Management of data*. 2002.
- (2) Gribov, Alexey, Dhinakaran Vinayagamurthy, and Sergey Gorbunov. "Stealthdb: a scalable encrypted database with full sql query support." *arXiv preprint arXiv:1711.02279* (2017).
- (3) Priebe, Christian, Kapil Vaswani, and Manuel Costa. "EnclaveDB: A secure database using SGX." 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018.
- (4) Antonopoulos, Panagiotis, et al. "Azure SQL Database Always Encrypted." *Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data*. 2020.
- (5) Zheng, Wenting, et al. "Opaque: An oblivious and encrypted distributed analytics platform." *14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17).* 2017.
- (6) Eskandarian, Saba, and Matei Zaharia. "ObliDB: oblivious query processing using hardware enclaves." *arXiv* preprint arXiv:1710.00458 (2017).
- (7) Fuhry, Benny, and Florian Kerschbaum. "Encdbdb: Searchable encrypted, fast, compressed, in-memory database using enclaves." *arXiv preprint arXiv:2002.05097* (2020).

MSc Project - Encrypted Query Processing in DuckDB - Sam Ansmink

23