
data-intensive systems in the
microsecond era

Dutch Seminar on Data Systems Design 16/07/2021

work done in collaboration
with Philippe Bonnet @ ITU

Pınar Tözün
pito@itu.dk, www.pinartozun.com

www.itu.dkwww.dasya.dk https://daphne-eu.github.io/

https://www.itu.dk/people/phbo/
mailto:pito@itu.dk
http://www.pinartozun.com/
http://www.itu.dk/
http://www.dasya.dk/
https://daphne-eu.github.io/

2

(typical) storage hierarchy

m
ore storage capacity per $$$

core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

m
ore access latency

PERSISTENT STORAGE (hard disk, ssd)

less data locality

registers

ARCHIVAL STORAGE (tape) also
persistent

disclaimer: memory hierarchy
is based on Intel Xeons’ here

3

(typical) storage hierarchy
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

ARCHIVAL STORAGE (tape)

SSD

hard disk
also

persistent

persistent storage
can have a hierarchy

in itself as well

4

(typical) storage hierarchy
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

ARCHIVAL STORAGE (tape)

local disk

remote disk
also

persistent

persistent storage
can have a hierarchy

in itself as well

distributed setting
(e.g., cluster of

machines)

5

latency to fetch data
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

ARCHIVAL STORAGE (tape)

NVMe SSD

hard disk
also

persistent

registers

1 cycle

~4 cycles

~10 cycles

~30-60 cycles

~100-200 cycles
or ~60ns

~10 µsec

~100sec

~5m
s

6

why focus on SSDs in this talk?
 except for SSDs, each layer stayed almost
stable the last decade in terms of latency

• improvements on SSD internals
• from SAS/SATA to PCIe
• linux block IO improvements

e.g., multiqueue

 improved price/capacity

led to several SSD-optimized data systems
• RocksDB, BwTree, LeanStore, Umbra …

source: Haas et al., CIDR 2020

increasing shift from pure in-memory-optimized
to SSD-optimized data systems!

https://kernel.dk/blk-mq.pdf
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://umbra-db.com/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf

7

agenda

• SSD internals & state of affairs today
• emerging SSD & computational storage landscape

8

solid-state disk (SSD)

flashflash

flash
controller

flashflashinternal
memory

internal
CPU

interface

interconnected flash chips

hard disk compatible API

compared to hard disks
• efficient random access
• internal parallelism

9

flash chips

cannot override a unit before erasing it first
garbage collection – for not used blocks so we can rewrite them

write amplification = data physically written / data logically written >= 1
writing data might cause rewrites & garbage collection

wear leveling – some cells/blocks die over time

unpredictable read/write latencies

unit of write

unit of erase

flash translation layer (FTL)
hides the internal complexities
of flash chips from end-users

but knowing them can lead to
smarter software design

0

10

20

30

40

Samsung Z-NAND Intel Optane

re
ad

 la
te

nc
y

(µ
se

c)

SSD (average)
SSD (99.9th)
chip

10

SSDs in the µsec era

SSDs equipped with Z-NAND & Optane deliver at
best 5x & 20x the read latency of the underlying

storage chip, respectively.

4K random read using fio - sources: [1, 2, 3]

transfer to locally-
attached host

data movement
within SSD

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/2
https://dl.acm.org/doi/10.1145/3329785.3329930

11

FTLs in the µsec era …
th

ro
ug

hp
ut

 (M
B/

s)

th
ro

ug
hp

ut
 (M

B/
s)

kIO
Ps

kIO
Ps

transfer size transfer size

Intel Optane

random writes- source: AnandTech
Samsung SSD with Z-NAND

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

12

FTLs in the µsec era …
th

ro
ug

hp
ut

 (M
B/

s)

th
ro

ug
hp

ut
 (M

B/
s)

kIO
Ps

kIO
Ps

transfer size transfer size

Samsung SSD with Z-NAND Intel Optane

… have drastic impact on throughput!

Samsung SSD with NAND

random writes- source: AnandTech

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

13

linux IOs in the µsec era

separation of control & data plane in linux now
zero copy & minimized synchronization overhead

SPDK

app
app app

aio

driver

io_uring

sources: Faster IO through io_uring &
Efficient I/O with io_uring & J.Axboe

memory copy
shared rings
for submissions
and completions

IR
Q

-b
as

ed

po
lli

ng
 o

r I
RQ

-b
as

ed

SSD SSD SSD

po
lli

ng
+d

riv
er

us
er

sp
ac

e
O

S
ke

rn
el

st
or

ag
e

driver

0

4

8

12

16

0 2 4 6 8

la
te

nc
y

(µ
se

c)

queue depth

io_uring without polling
aio
io_uring with polling
spdk

4k random reads
3d xPoint

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/

the benefits of fast storage wasted by
- data movement overheads
(from device to host & across network)
- black-box generic flash-translation layers
- multitude of software layers

how do we prevent these?

14

15

agenda

• SSD internals & state of affairs today
• emerging SSD & computational storage landscape

16

computational storage

= computation on the IO path

back when I was a kid

17

computational storage

8-core ARMv8 processor

32GB DRAM

2TB+ of NVM via M.2 slots

4x 10Gb Ethernet

Dragon Fire Card (DFC)
https://github.com/DFC-OpenSource/

back when I joined ITU

SSD landscape – local

18

us
er

sp
ac

e
O

S
ke

rn
el

st
or

ag
e

generic
FTL

static
custom

app-specific,
no comp.
storage

kv-store needs to change when you start app-specific
storage management & pushing functionality down!

custom
key-value store

KV-SSD

SSD

KV-FTL
PCIe

kv-ssd
driver

kv-store
upper layers

traditional SSD

SSD

FTL

filesystem
block layer

PCIe

storage manager
based on POSIX

NVMe driver
lightnvm

OCSSD

open-channel
SSD

PCIe

kv-store
upper layers

storage manager
based on lightkv

NVMe driver

black-box

SSD
FPGA

FPGA-based
storage controller

FTL

PCIe

kv-store
upper layers

storage manager
with push-down

smartssd
driver

similar to
OCSSD, less

customizable

zns libs

local ZNS-SSD

ZNS-SSD

PCIe

kv-store
upper layers

storage manager
based on lightkv

zns driver

ZNS-FTL

SSD landscape – disaggregated

19

us
er

sp
ac

e
O

S
ke

rn
el

st
or

ag
e

specialized computational
storage interface & specialized FTL

lightnvm /
zns libs / …

local
OCSSD / ZNS / …

open-channel
/ ZNS / … SSD

PCIe

kv-store
upper layers

storage manager
based on lightkv

NIC-based
new storage

interface

NIC

lightkv
kernel libs

open-channel
/ ZNS / … SSD

network
interface

fabric

PCIe

kv-store
upper layers

storage manager
based on lightkv

kv-store
upper layers

NIC-based new
storage interface
with functionality

push-down

NIC
(+FPGA+SoC)

lightkv
kernel libs

open-channel
/ ZNS / … SSD

network
interface

fabric

PCIe

storage manager
based on lightkv

custom
non-posix

IO interface

20

SSD with transactional Batch I/O interface

Application-specific Parser

The VLDB Journal 2021
• Philippe Bonnet and Ivan Picoli in

collaboration with MSR
• programming a storage controller using

OX framework on an OCSSD

programming SSDs

BwTree-specific
FTL!

https://link.springer.com/article/10.1007/s00778-020-00648-z
https://github.com/DFC-OpenSource/ox-ctrl
http://lightnvm.io/

21

AWS AQUA

Advanced Query Accelerator
• near-data processing from AWS
(also called computational storage)
• announced in 2019

(see video if interested)
• they are using SSDs and FPGAs

at the AQUA layer
• goal: to reduce network traffic

by reducing data movement

https://www.youtube.com/watch?v=6pZrE_tveLI

22

envisioned architectures

being standardized in NVMe (expected in 2022)

SNIA. Computational Storage Architecture and Programming Model. V0.5, Rev 1. Aug 2020

ebpf as vendor neutral ISA for offloads

23

conclusion
• data management community increasingly shifts from

pure in-memory optimized to SSD-optimized

• NVMe SSDs aren’t a uniform class of devices

• expanding range of standardized storage interfaces
(block, ZNS, KV, OCSSD)
 the storage interface is a design choice

• computational storage enables the definition of even
more specialized storage interfaces

need for co-design of storage engine – FTL – SSD

24

 Get to attend the top international data
management conference!

 Get insight into inner workings of a conference
 Contribute as virtual or on-site volunteer

You can help with
• Registration desk support
• Microphone duty for on-site discussions
• Registering participants in conference app
• Check program artefacts (videos, posters,…) –2-4 weeks prior

to conference

VLDB 2021 looking for student volunteers, contact us if interested!

Check out vldb.org/2021 Contact volunteer chair Ira Assent: ira@cs.au.dk

	data-intensive systems in the microsecond era
	(typical) storage hierarchy
	(typical) storage hierarchy
	(typical) storage hierarchy
	latency to fetch data
	why focus on SSDs in this talk?
	agenda
	solid-state disk (SSD)
	flash chips
	SSDs in the µsec era
	FTLs in the µsec era …
	FTLs in the µsec era …
	linux IOs in the µsec era
	the benefits of fast storage wasted by�- data movement overheads�(from device to host & across network) �- black-box generic flash-translation layers�- multitude of software layers��how do we prevent these?
	agenda
	computational storage
	computational storage
	SSD landscape – local
	SSD landscape – disaggregated
	programming SSDs
	AWS AQUA
	envisioned architectures
	conclusion
	Check out vldb.org/2021							Contact volunteer chair Ira Assent: ira@cs.au.dk
	backup
	device geometry
	zoned namespaces (ZNS)
	ZNS linux ecosystem
	OpenSSD & Smart SSD
	data-intensive systems on SSDs
	computational storage
	open-channel status
	key-value ssd
	Slide Number 34

