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(typical) storage hierarchy
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(typical) storage hierarchy
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(typical) storage hierarchy
core
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persistent storage 
can have a hierarchy 

in itself as well

distributed setting
(e.g., cluster of 

machines)
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latency to fetch data
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why focus on SSDs in this talk?
 except for SSDs, each layer stayed almost 
stable the last decade in terms of latency

• improvements on SSD internals
• from SAS/SATA to PCIe
• linux block IO improvements

e.g., multiqueue

 improved price/capacity

led to several SSD-optimized data systems
• RocksDB, BwTree, LeanStore, Umbra …

source: Haas et al., CIDR 2020

increasing shift from pure in-memory-optimized
to SSD-optimized data systems!

https://kernel.dk/blk-mq.pdf
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://umbra-db.com/
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
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agenda

• SSD internals & state of affairs today
• emerging SSD & computational storage landscape
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solid-state disk (SSD)

flashflash

flash 
controller

flashflashinternal
memory

internal
CPU

interface

interconnected flash chips

hard disk compatible API

compared to hard disks
• efficient random access
• internal parallelism 
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flash chips

cannot override a unit before erasing it first
garbage collection – for not used blocks so we can rewrite them

write amplification = data physically written / data logically written >= 1
writing data might cause rewrites & garbage collection

wear leveling – some cells/blocks die over time

unpredictable read/write latencies

unit of write

unit of erase

flash translation layer (FTL) 
hides the internal complexities 
of flash chips from end-users

but knowing them can lead to 
smarter software design
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SSDs in the µsec era

SSDs equipped with Z-NAND & Optane deliver at 
best 5x & 20x the read latency of the underlying 

storage chip, respectively.

4K random read using fio - sources: [1, 2, 3]

transfer to locally-
attached host

data movement 
within SSD

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/2
https://dl.acm.org/doi/10.1145/3329785.3329930
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FTLs in the µsec era …
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random writes- source: AnandTech
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https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
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FTLs in the µsec era …
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… have drastic impact on throughput!

Samsung SSD with NAND

random writes- source: AnandTech

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
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linux IOs in the µsec era

separation of control & data plane in linux now
zero copy & minimized synchronization overhead

SPDK
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queue depth

io_uring without polling
aio
io_uring with polling
spdk

4k random reads
3d xPoint

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/


the benefits of fast storage wasted by
- data movement overheads
(from device to host & across network) 
- black-box generic flash-translation layers
- multitude of software layers

how do we prevent these?

14
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agenda

• SSD internals & state of affairs today
• emerging SSD & computational storage landscape
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computational storage

= computation on the IO path

back when I was a kid
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computational storage

8-core ARMv8 processor

32GB DRAM

2TB+ of NVM via M.2 slots

4x 10Gb Ethernet

Dragon Fire Card (DFC)
https://github.com/DFC-OpenSource/

back when I joined ITU



SSD landscape – local 
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kv-store needs to change when you start app-specific 
storage management & pushing functionality down!
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SSD landscape – disaggregated 
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SSD with transactional Batch I/O interface

Application-specific Parser

The VLDB Journal 2021
• Philippe Bonnet and Ivan Picoli in 

collaboration with MSR
• programming a storage controller using 

OX framework on an OCSSD

programming SSDs

BwTree-specific 
FTL!

https://link.springer.com/article/10.1007/s00778-020-00648-z
https://github.com/DFC-OpenSource/ox-ctrl
http://lightnvm.io/
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AWS AQUA

Advanced Query Accelerator
• near-data processing from AWS
(also called computational storage)
• announced in 2019

(see video if interested)
• they are using SSDs and FPGAs

at the AQUA layer
• goal: to reduce network traffic

by reducing data movement

https://www.youtube.com/watch?v=6pZrE_tveLI
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envisioned architectures

being standardized in NVMe (expected in 2022)

SNIA. Computational Storage Architecture and Programming Model. V0.5, Rev 1. Aug 2020

ebpf as vendor neutral ISA for offloads
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conclusion
• data management community increasingly shifts from 

pure in-memory optimized to SSD-optimized

• NVMe SSDs aren’t a uniform class of devices 

• expanding range of standardized storage interfaces
(block, ZNS, KV, OCSSD)
 the storage interface is a design choice

• computational storage enables the definition of even 
more specialized storage interfaces

need for co-design of storage engine – FTL – SSD
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 Get to attend the top international data 
management conference!

 Get insight into inner workings of a conference
 Contribute as virtual or on-site volunteer

You can help with
• Registration desk support
• Microphone duty for on-site discussions
• Registering participants in conference app 
• Check program artefacts (videos, posters,…) –2-4 weeks prior 

to conference

VLDB 2021 looking for student volunteers, contact us if interested!

Check out vldb.org/2021 Contact volunteer chair Ira Assent: ira@cs.au.dk
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