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Machine Learning is widely adopted
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Management for explosion of ML models
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Example: HuggingFace

® Model description

e Intended uses & limitations
Training procedure & data

e Evaluation results (accuracy)

Limitations

e Speed also matters

o  Lack of information regarding
@ inference cost, e.g., FLOPs,

execution time

e Lack of necessary metadata

o Input & output
/73 o Performance across object
=~ classes

Models
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& google/vit-base-patchl6-384

G vit-base-patch16-224© <like
& ImageClassification () PyTorch o JAX  Transformers imagenet imagenet21k  arxiv:2010.11929
Model card Files and versions

Vision Transformer (base-sized model)

Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at
resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution

224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights

were converted from the timm repository by Ross Wightman, who already converted the weights from

JAX to PyTorch. Credits go to him.

Disclaimer: The team releasing ViT did not write a model card for this model so this model card has

been written by the Hugging Face team.

Model description

The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection
of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the
model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million

images and 1,000 classes, also at resolution 224x224.

Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are
linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for
classification tasks. One also adds absolute position embeddings before feeding the sequence to the

layers of the Transformer encoder.

By pre-training the model, it learns an inner representation of images that can then be used to extract
features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train
a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a

linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a
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of the IEEE conference on computer vision and pattern recognition. 2017: 7310-7311.
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Increasingly complex to select optimal ML models

For a specific inference task:

e'g" (Pear A Preq) V (Ppus A Pyellow)
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Red Car Yellow Bus

Accuracy Runtime = Accuracy Runtime = Accuracy Runtime = Accuracy Runtime
m1 0.95 70ms m30.92 80ms m40.96 70ms m60.87 40ms
vm2 0.94 60ms m40.91 60ms m50.97 80ms m70.90 60ms



Formalizing model repository

e Query
o (Pear A Preq) V (Ppus A Pyeliow)
e Model repository
o R(C{M, P}, A{M,P})
e

o4

\
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o4
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Table 1: Example accuracy A of models in a repository.

car bus red yellow
Model 1 | 0.88 0 0 0
Model 2 | 098 0 0 0
Model 3 0 075 0 0
Model4 | 0 095 0 0
Model 5 0 0 096 0.97
Model 6 0 0 097 0.98

Table 2: Example execution time C of models in a repository.

car bus red yellow
Model 1 | 15 00 00 00
Model 2 30 o) 00 %)
Model 3 | oo 20 00 00
Model 4 | 35 00 00
Model 5 | oo 00 5 5
Model 6 | oo 00 10 10

TUDelft
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Goal

e Generate query plans for inference queries defined on model repositories

o Tackle the problem of optimal model selection and predicate ordering
under accuracy and execution time constraints
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We devise three approaches

e Greedy (model selection)
e Model optimizer (model selection)

e Order optimizer (model selection + predicate ordering)
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(a) Logical query plan (b) Greedy query plan (c) Model optimal query plan (d) Order optimal query plar®
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We devise three approaches

e Greedy (model selection)
Model optimizer (model selection)
Order optimizer (model selection + predicate ordering)

Select Pareto-optimal models
Loop over predicates and greedily select model with most accurate / least execution time

N —

10



We devise three approaches

e Greedy (model selection)
e Model optimizer (model selection)
e Order optimizer (model selection + predicate ordering)

Apply Mixed Integer Programming:

e Model the accuracy of the query

e Model the execution time of the models

e Maximize accuracy / Minimize execution time
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car
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Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

Xm1l,car
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Xm1,red
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Bmi1 ={0,1} -
Bm2 ={0,1} -
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Bme = {0,1} -

Cost model

Cm1 \
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Cm3
Cm4

Cm5
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Accuracy model

a =(ared * car) + (ayellow * Abus)
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Predicate ordering

We devise three approaches

e Greedy (model selection) 1 2 3 4
e Model optimizer (model selection) red 0 0
e Order optimizer (model selection + predicate ordering) car 0 1 0 0
yellow [0 0 1 0
Apply Mixed Integer Programming: bus 0 0 0 1
e Model the order of predicates
e Model the accuracy of the query Model selection
e Model the execution time of the
models while taking into account of car bus red yellow
selectivity Model1 | 0 0 0 0
e Maximize accuracy / Minimize execution Model 2 1 0 0 0
time Model 3
Model 4
Model 5
Model 6

12



Table 1: Example accuracy A of models in a repository.

car bus red yellow

Formalizing model repository Mod i 085 0 0 0

Model 2 | 0.98 0 0 0

Model 3 0 0.75 0 0

Model 4 0.95 0 0
e Query ode

0
Model 5 0 0 0.96 0.97
Model 6 0 0 0.97 0.98

o (Pear A Prea) V (Ppus A Pyellow)

e Model repository

Table 2: Example execution time C of models in a repository.

car bus red yellow
Model 1 15 o) (o) 00
© R(C{M,P},A{M,P}) Model 2 | 30 ) ) )
. . Model 3 | oo 20 ) 00
o Selectivity(P) TSR 0 35 oo -
Model 5 | oo 00 5 5
Model 6 | o ) 10 10

Table 3: Example selectivity of predicates in a dataset.
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Predicate | Data Proportion Condition
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Preliminary results: accuracy vs execution time

Test on query generated from COCO classes and evaluate on validation set.

125 model variants generated from YOLOv3 and YOLOVS5.
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Preliminary results

100
)
80
70
60
50
40

Minimum execution time budget

30

300

200

100

Minimum execution time budget

Figure 7: Comparison on the execution time budget with the

greedy

model_opt
@ order_opt

® o © ® ®
@ @ @ @ @
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

(a) Minimum execution time constraint

greedy
model_opt
@ order_opt
@
. ® k4 ®
°® ® o ® ®
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

(b) Maximum accuracy constraint

boundary constraint

106 -

1044

102+

Generation time (ms)

10° 4

greedy

model_opt 192625.2

order_opt

2 4 8 16
#predicate

1389282.6

(a) Constrained on execution time

]
TUDelft

DNF DNF
I greedy 2740598.1

106_ 2 model_opt
— s order_opt
"
£
@ 1094
£ 10
e
c
0
B 107
[
c
[
[G)

100 4

2 4 8 16 32
#predicate
(b) Constrained on accuracy
Figure 8: Generation time of a query plan varying number 16

of predicates



“3
TUDelft
Takeaways

e We motivate the problem by highlighting the emergence of repositories of ML models
o Available models along with their metadata descriptions.

e We propose three query optimization strategies
o We evaluate them on a model repository that we construct from real models using
queries defined over the COCO datase

e Our greedy optimizer is the fastest in generating query plans, but our order optimizer produces
substantially better query plans when a tight constraint is encountered
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