Optimizing ML Prediction Queries and Beyond on Modern Data Engines

Konstantinos Karanasos
Gray Systems Lab

Azure Data applied research lab
Focus on Systems, DB, ML research to deliver product, OSS, and academic impact

~25 scientists, research engineers, and data scientists
ML-related GSL Areas of Focus

Enterprise-Grade ML

ML for Systems
The Data Science Dream

= I'm a =
DATA
SCIENTIST
I do statistics
on a Mac
The Data Science Dream

Data Scientist

“I want to train models on my laptop and share them”

Analyst/Developer

“I want to use existing models to make predictions”
The Data Science Reality

Data Scientist
- data exploration/preparation
- model training
- model deployment

Analyst/Developer
- data selection/transformation
- model scoring
The Data Science Challenges

- Data cleaning
- Combining datasets
- Featurization

- SQL vs. Python
- Scale computation
- Support multiple engines

- Data exploration/preparation
- Model training
- Model deployment

- Data provenance
- Model provenance
- Policy enforcement

- Different model types
- End-to-end pipeline optimization
- Hardware acceleration

- Data selection/transformation
- Model scoring
Prediction Query: Example

```
WITH data AS(
SELECT *
FROM patient_info AS pi
JOIN pulmonary_test AS pt ON pi.id=pt.id
JOIN blood_test AS bt ON pt.id=bt.id);

SELECT d.id
FROM PREDICT(MODEL = covid_risk.omnx,
DATA=data AS d)
WITH(risk_of_covid float) AS p
WHERE d.asthma = 1 AND
  p.risk_of_covid = "high";
```

"Find patients with asthma who are at high risk of developing a severe COVID-19 case"
Enterprise Prediction Queries: Motivation

Scoring drives the cost of ML in the enterprise
- Train once, predict several times
- Pre-trained models
- Up to 90% of the ML cost per estimates

Batch scoring is preferrable (or at least sufficient)
- In 130 customer engagements, 91% were covered with batch
- An additional 6% were okay with batch at short intervals

Traditional ML is most widely used over structured data
- Linear/logistic regression, tree-based models, featurization
- Kaggle survey: 80% of responders use it (43% use DL)
- Analysis of 10M GitHub notebooks: <20% use DL [arXiv2019]
Execution of prediction queries:
Bring models closer to the data
Prediction Queries: **Baseline Approach**

Enterprise Features
- Security: data and models outside of the DB
- Extra infrastructure
- Lack of tooling/best-practices

Performance
- Data movement
- Latency
- Throughput
Prediction Queries: In-Engine Evaluation

Enterprise Features
- Security: Data and models within the DBMS
- Reuse Existing infrastructure
- Language/tools/best practices

Performance
- Up to 13x faster on Spark
- Up to 330x faster on SQL Server
Prediction Queries in Azure Data Engines

SQL Server
- PREDICT statement in SQL Server
- Embedded ONNX Runtime in the engine
- Available in Azure SQL Edge and SQL DW (part of Azure Synapse Analytics)

Spark
- Introduced a new PREDICT operator
- Similar syntax to SQL Server
- Support for different types of models

North-star goal
- Support any model on any engine
Any Model on Any Engine

Any model type
- Common representation (MLflow)
- Common API for predictions (through Python or REST)

Data movement between data and ML engines
- Text-based, Arrow?
- Local vs. remote models

Model lifecycle management
- Integration with model registry (e.g., AzureML)

Containerized execution
- Library dependencies
- Any model, any language bindings, across any engine
Types of optimizations
1. Logical
2. Logical-to-physical

[Initial vision presented in CIDR2020]
Logical Optimizations: Predicate-based Model Pruning

Information passing from the data part to the ML part

Data-induced optimizations:
Induce predicates from the data (based on statistics)
Compile different models per data partition
Logical Optimizations: **Model Projection Pushdown**

Information passing from the ML part to the data part

Very applicable in practice:
in 508 OpenML models we analyzed, 46% of features remained unused
Logical-to-Physical Optimizations

MLtoSQL
- Turn a model to an equivalent SQL statement
- Avoid invoking the ML runtime

MLtoDNN (Hummingbird)
- Turn a traditional ML model to an equivalent neural network
- Exploit modern DNN engines and HW acceleration

Optimization strategies
- Which runtime to use: data engine or ML engine (traditional or DNN)?
- Should we use the GPU (when available)?
- Data-driven strategies to avoid hardcoded rules
Data-driven Optimization Strategies

Trained pipelines vary greatly

Trained over OpenML dataset
Classification has best results but
ML-informed requires no model
Hummingbird: From trees to NNs

Evaluate all conditions together
Evaluate all paths together

$$b = \begin{pmatrix} -5.1 \\ -1.8 \\ -2.4 \\ -0.4 \end{pmatrix}$$
Raven Implementation on Spark

Developed as a Spark extension (can be used by any Spark installation)

Single Scala rule triggering the Raven Optimizer written in Python
Evaluation: Raven on Spark

- 1.4—13.1x faster than Raven without optimizations
- 1.5—48x faster than SparkML
- 2.15—25.3x faster than Spark with scikit-learn
Evaluation: Raven Plans on SQL Server

1.4—330x faster than Raven without optimizations
3.9—108x faster than MADlib (for the queries it supports)

32 vCores, 128 GB
Postgres for MADlib
Evaluation: Impact of MLtoDNN on Complex Models

Hospital dataset
GB model of increasing complexity

Up to 1.33x speedup on CPU
1.6—8x speedup on GPU
Surakav

Using Tensor Runtimes Beyond ML
Offloading Relational Operators to Tensor Runtimes

Main ideas
1. Columnar data mapped into 2d tensors
2. Relational operators implemented using tensors operations
3. Hardware consciousness provided by the TR

Benefits
- Run queries on any HW supported by the tensor runtimes
- Leverage the massive development in tensor runtimes
- Avoid N*M explosion in implementation effort
Main Challenges

Expressivity
Can we cover all relational operators?
Current support: selection, filter, join, group-by, aggregates, sort, case, in, subqueries
19 out of 22 TPC-H queries

Performance
Operator implementations should be “tensorized” to exploit GPU parallelism
Avoid loops as much as possible (breaks vectorization)
Surakav vs. Spark on CPU

Time (sec)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q14 Q16 Q17 Q18 Q19 Q20 Q22

TPC-H SF=1

Single-core performance on an Azure NC6 v2 machine
Surakav on CPU/GPU vs. DuckDB and BlazingSQL

TPC-H SF=10

- Time (sec)

Q1
- Surakav-CPU1
- DuckDB-CPU1
- Surakav-CPU6
- DuckDB-CPU6
- Surakav-GPU
- BlazingSQL

Q6

Q14
Wrap-Up

Execution of prediction queries
 Bring models closer to the data
 Embed ML runtimes in data engines

Optimization of prediction queries
 Logical and logical-to-physical optimizations
 End-to-end implementation as a Spark extension
 Up to 13x (330x) performance improvement on Spark (SQL Server)

Tensor runtimes beyond ML
 Offload relational operators to ML accelerators
 Leverage compiler advancements and modern hardware
 Promising initial results against Spark, DuckDB, BlazingSQL
Thank you!

https://azuredata.microsoft.com/labs/gsl