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The Data Science Dream



The Data Science Dream

Data Scientist

Analyst/Developer

“I want to train models on my 
laptop and share them”

“I want to use existing models 
to make predictions”

model.
fit(data)

session.
predict(model, 
data)



The Data Science Reality

Data Scientist

Analyst/Developer

model
training

model scoring

data exploration/
preparation

data selection/
transformation

model 
deployment



The Data Science Challenges

model
training

model scoring

model 
deployment

• Data cleaning
• Combining 

datasets
• Featurization

• SQL vs. Python
• Scale computation
• Support multiple 

engines

• Different model types
• End-to-end pipeline 

optimization
• Hardware acceleration

• Data provenance
• Model provenance
• Policy enforcement

data exploration/
preparation

data selection/
transformation



Prediction Query: Example

“Find patients with asthma who are 
at high risk of developing a severe 
COVID-19 case”



Enterprise Prediction Queries: Motivation
Scoring drives the cost of ML in the enterprise

Train once, predict several times
Pre-trained models
Up to 90% of the ML cost per estimates

Batch scoring is preferrable (or at least sufficient)
In 130 customer engagements, 91% were covered with batch
An additional 6% were okay with batch at short intervals

Traditional ML is most widely used over structured data
Linear/logistic regression, tree-based models, featurization
Kaggle survey: 80% of responders use it (43% use DL)
Analysis of 10M GitHub notebooks: <20% use DL  [arXiv2019]



Execution of prediction queries:
Bring models closer to the data



Featurization Model

Container

RE
ST

Prediction Queries: Baseline Approach
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DBMS

Enterprise Features
Security: data and models outside of the DB
Extra infrastructure
Lack of tooling/best-practices

Performance
Data movement
Latency
Throughput



Prediction Queries: In-Engine Evaluation

policies

H
TT

P

WebServer

App logic

O
D

BC

Data engine

Enterprise Features
Security: Data and models within the DBMS
Reuse Existing infrastructure
Language/tools/best practices

Performance ?
Up to 13x faster on Spark
Up to 330x faster on SQL Server



Prediction Queries in Azure Data Engines
SQL Server

PREDICT statement in SQL Server
Embedded ONNX Runtime in the engine
Available in Azure SQL Edge and SQL DW 
(part of Azure Synapse Analytics)

Spark
Introduced a new PREDICT operator
Similar syntax to SQL Server
Support for different types of models

North-star goal
Support any model on any engine



Any Model on Any Engine
Any model type

Common representation (MLflow)
Common API for predictions (through Python or REST)

Data movement between data and ML engines
Text-based, Arrow?
Local vs. remote models

Model lifecycle management
Integration with model registry (e.g., AzureML)

Containerized execution
Library dependencies
Any model, any language bindings, across any engine



Raven
Optimization of Prediction Queries



Raven

+
DATA

MODELS

Unified IR

INSERT INTO model (name, model) AS
(“duration_of_stay”, 
“from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from …
model_pipeline = 
Pipeline([(‘union’, FeatureUnion(…  

(‘scaler’,StandardScaler()), …))
(‘clf’,DecisionTreeClassifier())])”);

M:model pipeline (Data Scientist)

Q: SQL query invoking model (Data Analyst)
DECLARE @model varbinary(max) = (

SELECT model FROM scoring_models
WHERE model_name = ”duration_of_stay“ );

WITH data AS(
SELECT * 
FROM patient_info AS pi 
JOIN blood_tests AS be ON pi.id = be.id 
JOIN prenatal_tests AS pt ON be.id = pt.id

);
SELECT d.id, p.length_of_stay
FROM PREDICT(MODEL=@model, DATA=data AS d) 
WITH(length_of_stay Pred float) AS p
WHERE d.pregnant = 1 AND p.length_of_stay > 7;
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Optimized IR
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+RAVEN

Types of optimizations
1. Logical
2. Logical-to-physical

[Initial vision presented in CIDR2020]

+

+



Logical Optimizations: Predicate-based Model Pruning
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Information passing from the data part to the ML part

Data-induced optimizations:
Induce predicates from the data (based on statistics)
Compile different models per data partition



Logical Optimizations: Model Projection Pushdown
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σInformation passing from the ML part to the data part

Very applicable in practice: 
in 508 OpenML models we analyzed, 46% of features remained unused



Logical-to-Physical Optimizations
MLtoSQL

Turn a model to an equivalent SQL statement
Avoid invoking the ML runtime

MLtoDNN (Hummingbird)
Turn a traditional ML model to an equivalent neural network
Exploit modern DNN engines and HW acceleration

Optimization strategies
Which runtime to use: data engine or ML engine (traditional or DNN)?
Should we use the GPU (when available)?
Data-driven strategies to avoid hardcoded rules



Data-driven Optimization Strategies

Trained pipelines vary greatly Trained over OpenML dataset
Classification has best results but 
ML-informed requires no model
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Hummingbird: From trees to NNs

https://github.com/microsoft/hummingbird

[OSDI2020]

https://github.com/microsoft/hummingbird


Raven Implementation on Spark
Prediction query

Raven Parser

Raven Python UDF

ResolutionRules

PostHocResolutionRules

RavenRule

Predicate-based model pruning

Model-projection pushdown

MLtoSQL

MLtoDNN

CatalystRavenSession

Apache Spark

Raven Optimizer

Developed as a Spark 
extension (can be used by 
any Spark installation)

Single Scala rule triggering 
the Raven Optimizer 
written in Python



Evaluation: Raven on Spark

5-node Spark cluster
8 cores/56 GB per 
machine

1.4—13.1x faster than Raven without optimizations
1.5—48x faster than SparkML
2.15–25.3x faster than Spark with scikit-learn



Evaluation: Raven Plans on SQL Server

32 vCores, 128 GB
Postgres for MADlib

1.4—330x faster than Raven without optimizations
3.9—108x faster than MADlib (for the queries it supports)



Evaluation: Impact of MLtoDNN on Complex Models
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Surakav
Using Tensor Runtimes Beyond ML



Offloading Relational Operators to Tensor Runtimes

Tensor Runtime

SQL 

Query Optimizer

Surakav

Main ideas

GPU FPGACPU

Custom ASICS

Benefits

[Vision in
VLDB2021]



Main Challenges
Expressivity

Can we cover all relational operators?
Current support: selection, filter, join, group-by, aggregates, sort, case, in, subqueries
19 out of 22 TPC-H queries

Performance
Operator implementations should be “tensorized” to exploit GPU parallelism
Avoid loops as much as possible (breaks vectorization)



Surakav vs. Spark on CPU
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Surakav on CPU/GPU vs. DuckDB and BlazingSQL
TPC-H SF=10
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Wrap-Up
Execution of prediction queries

Bring models closer to the data
Embed ML runtimes in data engines

Optimization of prediction queries
Logical and logical-to-physical optimizations
End-to-end implementation as a Spark extension
Up to 13x (330x) performance improvement on Spark (SQL Server)

Tensor runtimes beyond ML
Offload relational operators to ML accelerators
Leverage compiler advancements and modern hardware
Promising initial results against Spark, DuckDB, BlazingSQL



Thank you!

https://azuredata.microsoft.com/labs/gsl

https://azuredata.microsoft.com/labs/gsl

