

Optimizing ML Prediction Queries and Beyond on Modern Data Engines

Konstantinos Karanasos

DSDSD October 1st, 2021

F

Gray Systems Lab

Azure Data applied research lab

Focus on Systems, DB, ML research to deliver product, OSS, and academic impact

ML-related GSL Areas of Focus

The Data Science Dream

= I'm a = DATA SCIENTIST I do statistics on a Mac

The Data Science Dream

Data Scientist

"I want to train models on my laptop and share them"

Analyst/Developer

"I want to use existing models to make predictions"

The Data Science Reality

The Data Science Challenges

Prediction Query: Example

"Find patients with asthma who are at high risk of developing a severe COVID-19 case"

Enterprise Prediction Queries: Motivation

Scoring drives the cost of ML in the enterprise

Train once, predict several times Pre-trained models Up to 90% of the ML cost per estimates

Batch scoring is preferrable (or at least sufficient)

In 130 customer engagements, 91% were covered with batch An additional 6% were okay with batch at short intervals

Traditional ML is most widely used over structured data

Linear/logistic regression, tree-based models, featurization Kaggle survey: 80% of responders use it (43% use DL) Analysis of 10M GitHub notebooks: <20% use DL [arXiv2019]

Execution of prediction queries: Bring models closer to the data

Prediction Queries: Baseline Approach

Throughput

Prediction Queries: In-Engine Evaluation

Enterprise Features

Security: Data and models within the DBMS

Reuse Existing infrastructure

Language/tools/best practices

Performance

Up to 13x faster on Spark Up to 330x faster on SQL Server

Prediction Queries in Azure Data Engines

SQL Server

PREDICT statement in SQL Server Embedded ONNX Runtime in the engine Available in Azure SQL Edge and SQL DW (part of Azure Synapse Analytics)

Spark

Introduced a new PREDICT operator Similar syntax to SQL Server Support for different types of models

North-star goal

Support any model on any engine

Any Model on Any Engine

Any model type

Common representation (MLflow) Common API for predictions (through Python or REST)

Data movement between data and ML engines

Text-based, Arrow? Local vs. remote models

Model lifecycle management

Integration with model registry (e.g., AzureML)

Containerized execution

Library dependencies Any model, any language bindings, across any engine

Optimization of Prediction Queries

Raven

[Initial vision presented in CIDR2020]

Logical Optimizations: Predicate-based Model Pruning

Information passing from the data part to the ML part

Data-induced optimizations:

Induce predicates from the data (based on statistics) Compile different models per data partition

Logical Optimizations: Model Projection Pushdown

Information passing from the ML part to the data part

Very applicable in practice:

in 508 OpenML models we analyzed, 46% of features remained unused

Logical-to-Physical Optimizations

MLtoSQL

Turn a model to an equivalent SQL statement Avoid invoking the ML runtime

MLtoDNN (Hummingbird)

Turn a traditional ML model to an equivalent neural network Exploit modern DNN engines and HW acceleration

Optimization strategies

- Which runtime to use: data engine or ML engine (traditional or DNN)?
- Should we use the GPU (when available)?
- Data-driven strategies to avoid hardcoded rules

Data-driven Optimization Strategies

Trained pipelines vary greatly

Trained over OpenML dataset Classification has best results but ML-informed requires no model

Hummingbird: From trees to NNs [OSDI2020]

https://github.com/microsoft/hummingbird

Raven Implementation on Spark

Prediction query

Developed as a Spark extension (can be used by any Spark installation)

Single Scala rule triggering the Raven Optimizer written in Python

Evaluation: Raven on Spark

5-node Spark cluster 8 cores/56 GB per machine

1.4—13.1x faster than Raven without optimizations

1.5—48x faster than SparkML

2.15–25.3x faster than Spark with scikit-learn

Evaluation: Raven Plans on SQL Server

32 vCores, 128 GB Postgres for MADlib

1.4—330x faster than Raven without optimizations

3.9—108x faster than MADlib (for the queries it supports)

Evaluation: Impact of MLtoDNN on Complex Models

Up to 1.33x speedup on CPU 1.6—8x speedup on GPU

Using Tensor Runtimes Beyond ML

Offloading Relational Operators to Tensor Runtimes

Main ideas

1. Columnar data mapped into 2d tensors

[Vision in

VLDB2021]

- 2. Relational operators implemented using tensors operations
- 3. Hardware consciousness provided by the TR

Benefits

- Run queries on any HW supported by the tensor runtimes
- Leverage the massive development in tensor runtimes
- Avoid N*M explosion in implementation effort

Main Challenges

Expressivity

- Can we cover all relational operators?
- Current support: selection, filter, join, group-by, aggregates, sort, case, in, subqueries 19 out of 22 TPC-H queries

Performance

Operator implementations should be "tensorized" to exploit GPU parallelism Avoid loops as much as possible (breaks vectorization)

Surakav vs. Spark on CPU

Surakav on CPU/GPU vs. DuckDB and BlazingSQL

Wrap-Up

Execution of prediction queries

Bring models closer to the data Embed ML runtimes in data engines

Optimization of prediction queries

Logical and logical-to-physical optimizations End-to-end implementation as a Spark extension Up to 13x (330x) performance improvement on Spark (SQL Server)

Tensor runtimes beyond ML

- Offload relational operators to ML accelerators
- Leverage compiler advancements and modern hardware
- Promising initial results against Spark, DuckDB, BlazingSQL

Thank you!

https://azuredata.microsoft.com/labs/gsl