
Optimizing ML Prediction Queries and Beyond
on Modern Data Engines

Konstantinos Karanasos

DSDSD
October 1st, 2021

~25 scientists,
research
engineers, and
data scientists

Gray Systems Lab

Azure Data applied research lab
Focus on Systems, DB, ML research to deliver product, OSS, and academic impact

REDMOND, WA

MADISON, WI

SUNNYVALE, CA

ML-related GSL Areas of Focus

Enterprise-
Grade ML ML for Systems

The Data Science Dream

The Data Science Dream

Data Scientist

Analyst/Developer

“I want to train models on my
laptop and share them”

“I want to use existing models
to make predictions”

model.
fit(data)

session.
predict(model,
data)

The Data Science Reality

Data Scientist

Analyst/Developer

model
training

model scoring

data exploration/
preparation

data selection/
transformation

model
deployment

The Data Science Challenges

model
training

model scoring

model
deployment

• Data cleaning
• Combining

datasets
• Featurization

• SQL vs. Python
• Scale computation
• Support multiple

engines

• Different model types
• End-to-end pipeline

optimization
• Hardware acceleration

• Data provenance
• Model provenance
• Policy enforcement

data exploration/
preparation

data selection/
transformation

Prediction Query: Example

“Find patients with asthma who are
at high risk of developing a severe
COVID-19 case”

Enterprise Prediction Queries: Motivation
Scoring drives the cost of ML in the enterprise

Train once, predict several times
Pre-trained models
Up to 90% of the ML cost per estimates

Batch scoring is preferrable (or at least sufficient)
In 130 customer engagements, 91% were covered with batch
An additional 6% were okay with batch at short intervals

Traditional ML is most widely used over structured data
Linear/logistic regression, tree-based models, featurization
Kaggle survey: 80% of responders use it (43% use DL)
Analysis of 10M GitHub notebooks: <20% use DL [arXiv2019]

Execution of prediction queries:
Bring models closer to the data

Featurization Model

Container

RE
ST

Prediction Queries: Baseline Approach

policies

H
TT

P

WebServer

App logic

O
DB

C

DBMS

Enterprise Features
Security: data and models outside of the DB
Extra infrastructure
Lack of tooling/best-practices

Performance
Data movement
Latency
Throughput

Prediction Queries: In-Engine Evaluation

policies

H
TT

P

WebServer

App logic

O
D

BC

Data engine

Enterprise Features
Security: Data and models within the DBMS
Reuse Existing infrastructure
Language/tools/best practices

Performance ?
Up to 13x faster on Spark
Up to 330x faster on SQL Server

Prediction Queries in Azure Data Engines
SQL Server

PREDICT statement in SQL Server
Embedded ONNX Runtime in the engine
Available in Azure SQL Edge and SQL DW
(part of Azure Synapse Analytics)

Spark
Introduced a new PREDICT operator
Similar syntax to SQL Server
Support for different types of models

North-star goal
Support any model on any engine

Any Model on Any Engine
Any model type

Common representation (MLflow)
Common API for predictions (through Python or REST)

Data movement between data and ML engines
Text-based, Arrow?
Local vs. remote models

Model lifecycle management
Integration with model registry (e.g., AzureML)

Containerized execution
Library dependencies
Any model, any language bindings, across any engine

Raven
Optimization of Prediction Queries

Raven

+
DATA

MODELS

Unified IR

INSERT INTO model (name, model) AS
(“duration_of_stay”,
“from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from …
model_pipeline =
Pipeline([(‘union’, FeatureUnion(…

(‘scaler’,StandardScaler()), …))
(‘clf’,DecisionTreeClassifier())])”);

M:model pipeline (Data Scientist)

Q: SQL query invoking model (Data Analyst)
DECLARE @model varbinary(max) = (

SELECT model FROM scoring_models
WHERE model_name = ”duration_of_stay“);

WITH data AS(
SELECT *
FROM patient_info AS pi
JOIN blood_tests AS be ON pi.id = be.id
JOIN prenatal_tests AS pt ON be.id = pt.id

);
SELECT d.id, p.length_of_stay
FROM PREDICT(MODEL=@model, DATA=data AS d)
WITH(length_of_stay Pred float) AS p
WHERE d.pregnant = 1 AND p.length_of_stay > 7;

patient_info blood_tests

Categorical

Encoding

FeatureExtractor

DecisionTreeClassifier

Rescaling

Concat

prenatal_tests

σ
pregnant = 1

age

pregnant

gender

1 0

F M X<35 >=35

…bp … …

…

…

…

Unified IR for MQ

patient_info blood_tests

NeuralNet

prenatal_tests

Optimized plan for MQ

switch:
case (bp>140): 7
case (120<bp<140): 4
case (bp<120): 2

σ
age >35

σ
pregnant = 1

π π π

σ
age <=35

U

σ
length_of_stay >= 7

Static
Analysis

Cross
Optimization

2 4 7

… … … …

σ
length_of_stay >= 7

σ
bp>140

SQL-inlined model

MQ: inference query

Runtime
Code gen

+

Optimized IR

INSERT INTO model (name, model) AS
(“duration_of_stay”,
“from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from …
model_pipeline =
Pipeline([(‘union’, FeatureUnion(…

(‘scaler’,StandardScaler()), …))
(‘clf’,DecisionTreeClassifier())])”);

M:model pipeline (Data Scientist)

Q: SQL query invoking model (Data Analyst)
DECLARE @model varbinary(max) = (

SELECT model FROM scoring_models
WHERE model_name = ”duration_of_stay“);

WITH data AS(
SELECT *
FROM patient_info AS pi
JOIN blood_tests AS be ON pi.id = be.id
JOIN prenatal_tests AS pt ON be.id = pt.id

);
SELECT d.id, p.length_of_stay
FROM PREDICT(MODEL=@model, DATA=data AS d)
WITH(length_of_stay Pred float) AS p
WHERE d.pregnant = 1 AND p.length_of_stay > 7;

patient_info blood_tests

Categorical

Encoding

FeatureExtractor

DecisionTreeClassifier

Rescaling

Concat

prenatal_tests

σ
pregnant = 1

age

pregnant

gender

1 0

F M X<35 >=35

…bp … …

…

…

…

Unified IR for MQ

patient_info blood_tests

NeuralNet

prenatal_tests

Optimized plan for MQ

switch:
case (bp>140): 7
case (120<bp<140): 4
case (bp<120): 2

σ
age >35

σ
pregnant = 1

π π π

σ
age <=35

U

σ
length_of_stay >= 7

Static
Analysis

Cross
Optimization

2 4 7

… … … …

σ
length_of_stay >= 7

σ
bp>140

SQL-inlined model

MQ: inference query

Runtime
Code gen

+RAVEN

Types of optimizations
1. Logical
2. Logical-to-physical

[Initial vision presented in CIDR2020]

+

+

Logical Optimizations: Predicate-based Model Pruning

age BPM asthma

Scaler OnehotEncoder(OHE)

Concat

hypertension

OHE

m

Tree Classifier

f0, f1 f2, f3 f4, f5

‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m

Tree Classifier

f0, f1 f2, f3 f4, f5

Tree Classifier

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m

f0, f1 f2, f3 f4, f5

age BPM Const=1

Scaler OHE

hypertension

OHE

m’

Tree Classifier

f0, f1 f2, f3 f4, f5
FE [0]

Concat

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m’

Tree Classifier

f0, f1 f2, f3 f4, f5

‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’

FeatureExtractor(FE)[0,4,5]

FE [None] FE [0,1]

nuf

age

Scaler

Concat

hypertension

OHE

m’

Tree Classifier

f0 f4, f5

F = [f0, f1, f2, f3, f4, f5] F = [f0, f1, f2, f3, f4, f5] F = [f0, f1, f2, f3, f4, f5]

F = [f0, f4, f5]

‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

x xx
x

F = [f0, f4, f5]F = [f0, f4, f5]

f0 f4, f5

‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’ ‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’

PushdownFE

True False

PushdownFE

asthma=1 πage, BPM, asthma, hypertension… age, BPM, asthma, hypertensionπ… π age, BPM, hypertension…

π age, BPM, hypertension… π age, BPM, hypertension… πage, BPM, hypertension…

σ

Information passing from the data part to the ML part

Data-induced optimizations:
Induce predicates from the data (based on statistics)
Compile different models per data partition

Logical Optimizations: Model Projection Pushdown
age BPM asthma

Scaler OnehotEncoder(OHE)

Concat

hypertension

OHE

m

Tree Classifier

f0, f1 f2, f3 f4, f5

‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m

Tree Classifier

f0, f1 f2, f3 f4, f5

Tree Classifier

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m

f0, f1 f2, f3 f4, f5

age BPM Const=1

Scaler OHE

hypertension

OHE

m’

Tree Classifier

f0, f1 f2, f3 f4, f5
FE [0]

Concat

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m’

Tree Classifier

f0, f1 f2, f3 f4, f5

‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’

FeatureExtractor(FE)[0,4,5]

FE [None] FE [0,1]

nuf

age

Scaler

Concat

hypertension

OHE

m’

Tree Classifier

f0 f4, f5

F = [f0, f1, f2, f3, f4, f5] F = [f0, f1, f2, f3, f4, f5] F = [f0, f1, f2, f3, f4, f5]

F = [f0, f4, f5]

‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

x xx
x

F = [f0, f4, f5]F = [f0, f4, f5]

f0 f4, f5

‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’ ‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’

PushdownFE

True False

PushdownFE

asthma=1 πage, BPM, asthma, hypertension… age, BPM, asthma, hypertensionπ… π age, BPM, hypertension…

π age, BPM, hypertension… π age, BPM, hypertension… πage, BPM, hypertension…

σInformation passing from the ML part to the data part

Very applicable in practice:
in 508 OpenML models we analyzed, 46% of features remained unused

Logical-to-Physical Optimizations
MLtoSQL

Turn a model to an equivalent SQL statement
Avoid invoking the ML runtime

MLtoDNN (Hummingbird)
Turn a traditional ML model to an equivalent neural network
Exploit modern DNN engines and HW acceleration

Optimization strategies
Which runtime to use: data engine or ML engine (traditional or DNN)?
Should we use the GPU (when available)?
Data-driven strategies to avoid hardcoded rules

Data-driven Optimization Strategies

Trained pipelines vary greatly Trained over OpenML dataset
Classification has best results but
ML-informed requires no model

+1
𝑏 =

−5.1
−1.8
−2.4
−0.4

+1

+1

+1

+1

𝕩,

𝕩-

𝕩.

𝕩/

𝕩0

𝕩1

𝑛!

𝑛"

𝑛#

𝑛$

𝑙!

𝑙"

𝑙#

𝑙$

𝑙%

𝑙𝑣 =

10
20
⋮
50

𝕩. > 5.1

𝕩 ∈ ℝ1

T

𝕩. > 2.410

𝕩, > 1.8 𝕩0 > 0.4

20 30

5040

F

𝑛!

𝑛" 𝑛$

𝑛#

𝑙!

𝑙" 𝑙#

𝑙$ 𝑙%

Evaluate all
conditions
together

Evaluate all
paths

together

Hummingbird: From trees to NNs

https://github.com/microsoft/hummingbird

[OSDI2020]

https://github.com/microsoft/hummingbird

Raven Implementation on Spark
Prediction query

Raven Parser

Raven Python UDF

ResolutionRules

PostHocResolutionRules

RavenRule

Predicate-based model pruning

Model-projection pushdown

MLtoSQL

MLtoDNN

CatalystRavenSession

Apache Spark

Raven Optimizer

Developed as a Spark
extension (can be used by
any Spark installation)

Single Scala rule triggering
the Raven Optimizer
written in Python

Evaluation: Raven on Spark

5-node Spark cluster
8 cores/56 GB per
machine

1.4—13.1x faster than Raven without optimizations
1.5—48x faster than SparkML
2.15–25.3x faster than Spark with scikit-learn

Evaluation: Raven Plans on SQL Server

32 vCores, 128 GB
Postgres for MADlib

1.4—330x faster than Raven without optimizations
3.9—108x faster than MADlib (for the queries it supports)

Evaluation: Impact of MLtoDNN on Complex Models

0
250
500
750

1000

60 Est/Dep 5 100 Est/Dep 4 100 Est/Dep 8 500 Est/Dep 8

2500
2750
3000
3250 Raven (no-opt)

MLtoDNN-CPU
MLtoDNN-GPU

En
d-

to
-e

nd
 ti

m
e

(s
ec

)

#estimators/depth

Hospital dataset
GB model of increasing
complexity

Up to 1.33x speedup on CPU
1.6—8x speedup on GPU

Surakav
Using Tensor Runtimes Beyond ML

Offloading Relational Operators to Tensor Runtimes

Tensor Runtime

SQL

Query Optimizer

Surakav

Main ideas

GPU FPGACPU

Custom ASICS

Benefits

[Vision in
VLDB2021]

Main Challenges
Expressivity

Can we cover all relational operators?
Current support: selection, filter, join, group-by, aggregates, sort, case, in, subqueries
19 out of 22 TPC-H queries

Performance
Operator implementations should be “tensorized” to exploit GPU parallelism
Avoid loops as much as possible (breaks vectorization)

Surakav vs. Spark on CPU

0

2

4

6

8

10

12

14

16

18

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q14 Q16 Q17 Q18 Q19 Q20 Q22

Ti
m

e
(s

ec
)

Spark Surakav

TPC-H SF=1

Single-core
performance on an
Azure NC6 v2 machine

Surakav on CPU/GPU vs. DuckDB and BlazingSQL
TPC-H SF=10

0

1

2

3

4

5

6

7

8

Q1 Q6 Q14

Ti
m

e
(s

ec
)

Surakav-CPU1

DuckDB-CPU1

Surakav-CPU6

DuckDB-CPU6

Surakav-GPU

BlazingSQL

Wrap-Up
Execution of prediction queries

Bring models closer to the data
Embed ML runtimes in data engines

Optimization of prediction queries
Logical and logical-to-physical optimizations
End-to-end implementation as a Spark extension
Up to 13x (330x) performance improvement on Spark (SQL Server)

Tensor runtimes beyond ML
Offload relational operators to ML accelerators
Leverage compiler advancements and modern hardware
Promising initial results against Spark, DuckDB, BlazingSQL

Thank you!

https://azuredata.microsoft.com/labs/gsl

https://azuredata.microsoft.com/labs/gsl

