B Microsoft @

Optimizing ML Prediction Queries and Beyond
on Modern Data Engines

Konstantinos Karanasos

DSDSD
October 1st, 2021

Gray Systems Lab

Azure Data applied research lab
Focus on Systems, DB, ML research to deliver product, OSS, and academic impact

~25 scientists,
research

engineers, and
data scientists

@

ML-related GSL Areas of Focus

Enterprise-
Grade ML

/ /
/ FF
I

¥
{
¢
¥
F

ML for Systems

The Data Science Dream

=I'ma =

DATA
SCIENTIST

I do statistics
on a Mac

The Data Science Dream

“I want to train models on my
laptop and share them”

Data Scientist

“I want to use existing models
to make predictions”

Analyst/Developer

The Data Science Reality

‘ data exploration/ model model

Data Scientist preparation training deployment

Y2
i —

data selection/ model scoring
Analyst/Developer transformation

The Data Science Challenges

JX

model

deployment

Y2

* Different model types
* End-to-end pipeline
optimization
Hardware acceleration

data selection/ model scoring .

transformation

Prediction Query: Example

WITH data AS(

SELECT *
FROM patient info AS pi . . .
JOIN pulmonary test AS pt ON pi.id=pt.id “Find patlents with asthma who are
JOIN blood test AS bt ON pt.id=bt.id); . . .
e e at high risk of developing a severe
SELECT d.id)
FROM PREDICT (MODEL = covid risk.onnx, COVID-19 case

DATA=data AS d)
WITH(risk of covid float) AS p
WHERE d.asthma = 1 AND

p.risk of covid = "high”;

Trained
pipeline

G)
[TreeClassifier]
4
Concat]
Onehot
[SR][Encoder(OHE)] [halz]
X %
[bmi][BPM J[asthma] [hyper-]
tension

A

Enterprise Prediction Queries: Motivation

Scoring drives the cost of ML in the enterprise

Train once, predict several times
Pre-trained models
Up to 90% of the ML cost per estimates

Batch scoring is preferrable (or at least sufficient)

In 130 customer engagements, 91% were covered with batch
An additional 6% were okay with batch at short intervals

Traditional ML is most widely used over structured data
Linear/logistic regression, tree-based models, featurization

Kaggle survey: 80% of responders use it (43% use DL)
Analysis of 10M GitHub notebooks: <20% use DL [arXiv2019]

Execution of prediction ¢

Bring models closer to tr

ue

rles:

e C

ata

@

Prediction Queries: Baseline Approach

E App logic p

oI|C|es

v

A

A

WebServer

A

DBMS

~~>
=

Featurization Model

Container

Enterprise Features

Security: data and models outside of the DB
Extra infrastructure

Lack of tooling/best-practices

|

Data movement
Latency
Throughput

Prediction Queries: In-Engine Evaluation

ODBC

App |OgIC poI|C|es

WebServer Data engine

Enterprise Features

Security: Data and models within the DBMS
Reuse Existing infrastructure
Language/tools/best practices

|]

Up to 13x faster on Spark
Up to 330x faster on SQL Server

Prediction Queries in Azure Data Engines

SQL Server
. WITH data AS(
PREDICT statement in SQL Server SELECT *
. . . FROM patient info AS pi
Embedded ONNX Runtime in the engine JOIN pulmonary test AS pt ON pi.id=pt.id
]] JOIN blood test AS bt ON pt.id=bt.id);
Ava||ab|e N Azu re SQL Edge and SQL DW SLLL\Jled ...
(pa rt Of AZU re Synapse Analytics) FROM PREDICT ([V\IO’LEEL = covid_risk.onnx,
DATA=data AS d) o
WITH(risk _of covid float) AS p o £
S k WHERE d.asthma = 1 AND § g
par p.risk of covid = ”"high”; =g
Introduced a new PREDICT operator i R
L [TreeClassifier]
Similar syntax to SQL Server 3
. Concat
Support for different types of models [, = .]\
Onehot
N h | [ST J[Encoder(OHE)] I. ehalz J
orth-star goa X % 1
| T) (o) () (22
Support any model on any engine & \)

Any Model on Any Engine

Any model type
Common representation (MLflow)
Common API for predictions (through Python or REST)

Data movement between data and ML engines
Text-based, Arrow?
Local vs. remote models

Model lifecycle management
Integration with model registry (e.g., AzureML)

Containerized execution
Library dependencies
Any model, any language bindings, across any engine

Raven \

Optimization of Prediction Queries

T-SQL
ﬁ Spofll(\z SQL

[l pandas

DATA

€ ONNX O

4
Qo ¢

TensorFlow

MODELS

RAVEN

N &
0* SpQrK e gc(rbml‘.Server
-
’ +
SQL-inlined model f
T 4 %- .a’l TensorFlow
O 0Tl N %%% ONNX /-
N7] RUNTIME
TN !
L] +
anetnt_info bloodttests -
e
GPU

[Initial vision presented in CIDR2020]

Logical Optimizations: Predicate-based Model Pruning

Information passing from the data part to the ML part

(Tree Classifier h e (Tree Classifier h e Tree Classifier

TruFalse @
m| o0 LD m| 0P G-

oo RO IR CHIFD || o i > A e

\‘high’ low’ ‘high’ Iow ‘high” ‘low’ ‘high’ ‘low’) » _high” ‘ow’ ‘high’ ‘ow’ ‘high’ ‘low’ ‘high’ ‘low’) » \‘high’ low’ ‘high’ ‘ow’ ‘high’ ‘low’ ‘high’ ‘low’)

F = [f0, f1, f2, 3, 4, f5] i F = [0, 1, 2, f3, f4, f5] i F = [0, f1, 2, 13, 14, 15]

C -C t -Concat
f0, 1, @2 f3\ f4, f5 f0, 1. " 2, 73— f4, f5 f0, 1. 2, 13 \ f4, f5
et] (orarnanrorn] ove

X 3 A 4 X L3 X %
[age] [BPM] [asthma] [hypertension] [age] [BPM] [Const=1][hypertension] [age] [BPM] [Const:l] [hypertension]
______________Z ___
o asthma=1 1_Tage, BPM, asthma, hypertension ?rage, BPM, asth#aa, hypertension T‘I' age, BPM, hypertension

Data-induced optimizations:
Induce predicates from the data (based on statistics)
Compile different models per data partition

Logical Optimizations: Model Projection Pushdown

Information passing from the ML part to the data part

Tree Classifier

Tree Classifier

J

Tree Classifier

‘high’ ‘low’ ‘high’ ‘low’

ml Che s Cre m’ m’
‘high” ‘low’ ‘high’ ‘low’ » high™ low” “high" low’ »
& J . J (&
4 F=[f0, 4, 5] F = [f0, f4, f5]
n FeatureExtractor(FE)[0,4,5]) -Concat 4. f5
uf [] PushdownFE v A \ PushdownFE
i] (e) (e)
f0, fL W W 2, 3 ‘\f4, f5 fo, f1 f2, f3 4, f5

[age] [BPM] [Const=1] [hypertension]

1T age, BPM, hypertension 1T age, BPM, hypertension

Very applicable in practice:
in 508 OpenML models we analyzed, 46% of features remained unused

4 F=[f0, f4, 5]
Concat

hypertenswn

TT age, BRM, hypertension

Logical-to-Physical Optimizations

MLtoSQL
Turn a model to an equivalent SQL statement
Avoid invoking the ML runtime

MLtoDNN (Hummingbird)
Turn a traditional ML model to an equivalent neural network
Exploit modern DNN engines and HW acceleration

Optimization strategies
Which runtime to use: data engine or ML engine (traditional or DNN)?
Should we use the GPU (when available)?
Data-driven strategies to avoid hardcoded rules

Data-driven Optimization Strategies

100000

10000

1000

10

o

1

o

1

0.1

alay

operators # inputs # features % unused #tree nodes # trees avg tree
features depth
\ J

tree-based models

Trained pipelines vary greatly

ML-informed Classification-based Regression-based
rule-based

Trained over OpenML dataset
Classification has best results but
ML-informed requires no model

Evaluate all Evaluate all
conditions paths

Hummingbird: From trees to NNs

[OSDI12020] together together

https://github.com/microsoft/hummingbird

Raven Implementation on Spark

Prediction query

4)
ApaChefpark N Developed as a Spark
(" RavenSession) Catalyst extension (can be used by
[Raven Parser] > [Resolutl:nRuIes] any Spark installation)
[Raven Python UDF] [PostHocResolutionRules | , , ,
_) N ¥ J Single Scala rule triggering
' RavenRule the Raven Optimizer
L \— T : J) written in Python
(Raven Optimizer)
Predicate-based model pruning] [MLtoSQL]
[Model-projection pushdown [MLtoDNN]
- J

Evaluation: Raven on Spark

End-to-end Time (sec)

6,000 r

K
(=}
(=}
o

2,000 [

o

Credit Card

Hospital

Expedia

B SparkML
Spark+SKL

Flights

1.4—13.1x faster than Raven without optimizations
1.5—48x faster than SparkML
2.15-25.3x faster than Spark with scikit-learn

5-node Spark cluster
8 cores/56 GB per
machine

Evaluation: Raven Plans on SQL Server

100,000
10,000
o
A
~ 1,000
()]
£ 9
= (©
_|; 8 100
c
o O
o~ 10
*
o
c
L

ESQL Server (DOP1)
B SQL Server (DOP16)

B MADIib
M Raven (DOP1)
Raven (DOP16)

DT RF/GB| LR DT GB LR DT GB

LR DT RF/GB| LR

Credit Card Hospital Expedia Flights

1.4—330x faster than Raven without optimizations
3.9—108x faster than MADIib (for the queries it supports)

32 vCores, 128 GB
Postgres for MADIib

Evaluation: Impact of MLtoDNN on Complex Models

3250 B Raven (no-opt)
- J000 MLtoDNN-CPU
M MLtoDNN-GPU

Hospital dataset
GB model of increasing
complexity

5 o
S O
ogo

End-to-end time (sec

i |[1111] =
60 Est/Dep 5 100 Est/Dep4 100 Est/Dep8 500 Est/Dep 8
#estimators/depth

Up to 1.33x speedup on CPU
1.6—8x speedup on GPU

Surakav

Using

¥

ensor Runtimes Beyond ML

[Vision in

Offloading Relational Operators to Tensor Runtimes VLDB2021]

Main ideas
1. Columnar data mapped into 2d tensors

_ 2. Relational operators implemented

using tensors operations

Hardware consciousness
provided by the TR

Surak
urakav 3

Tensor Runtime

Benefits

* Run queries on any HW supported by the
tensor runtimes

 Leverage the massive development in
tensor runtimes

 Avoid N*M explosion in implementation
effort

FPGA

Custom ASICS

Main Challenges

Expressivity
Can we cover all relational operators?

Current support: selection, filter, join, group-by, aggregates, sort, case, in, subqueries
19 out of 22 TPC-H queries

Performance

Operator implementations should be “tensorized” to exploit GPU parallelism
Avoid loops as much as possible (breaks vectorization)

Surakav vs. Spark on CPU

Time (sec)

18

16

14

12

10

0

(e)}

TPC-H SF=1

Single-core
performance on an
Azure NC6 v2 machine

Q1 Q2 03 04 Qo5 06 Q7 Q8 Q9 Q10 Q11 Q12 Q14 Ql6 Q17 Q18 Q19 Q20 Q22

W Spark m Surakav

Surakav on CPU/GPU vs. DuckDB and BlazingSQL

TPC-H SF=10

8

7

6

5 W Surakav-CPU1
g m DuckDB-CPU1
=4 m Surakav-CPU6
£ DuckDB-CPU6

3 m Surakav-GPU

M BlazingSQL
2
| I I
Q1 Q6 Q14

Wrap-Up

Execution of prediction queries

Bring models closer to the data
Embed ML runtimes in data engines

Optimization of prediction queries
Logical and logical-to-physical optimizations
End-to-end implementation as a Spark extension
Up to 13x (330x) performance improvement on Spark (SQL Server)

Tensor runtimes beyond ML

Offload relational operators to ML accelerators
Leverage compiler advancements and modern hardware

Promising initial results against Spark, DuckDB, BlazingSQL

B Microsoft

Thank you!

https://azuredata.microsoft.com/labs/gsl

@

https://azuredata.microsoft.com/labs/gsl

