Exploiting string compression
in data systems

Peter Boncz

+Viktor Leis, Thomas Neumann, Tim Gubner,
Bogdan Ghita, Diego Tome

DBtest @ SIGMOD138

Get Real: How Benchmarks Fail to Represent the Real World

Adrian Vogelsgesang, Michael Haubenschild,
Jan Finis, Alfons Kemper, Viktor Leis, Tobias Muehlbauer, Thomas Neumann, Manuel Then

Tableau Software

{avogelsgesang, mhaubenschild, jfinis, akemper, vleis, tmuehlbauer, tneumann, mthenl}2tableau.com

ABSTRACT

Industrial as well as academic analytics systems are usually evalu-
ated based on well-known standard benchmarks, such as TPC-H
or TPC-DS. These benchmarks test various components of the
DBMS including the join optimizer, the implementation of the join
and aggregation operators, concurrency control and the sched-
uler. However, these benchmarks fall short of evaluating the “real”
challenges imposed by modern Bl systems, such as Tableau, that
emit machine-generated query workload$U THiS paper feparts &
comprehensive study based on a set of more than 60k real-world BI
data repositories together with their generated query workload. The
machine-generated workload posed by Bl tools differs from the
“hand-crafted” benchmark queries in multiple ways: Structurally
simple relational operator trees often come with extremely complex
scalar expressions such that expression evaluation becomes the
limiting factor. At the same time, we also encountered much more
complex relational operator trees than covered by benchmarks. This
long tail in both, operator tree and expression complexity, is not
adequately represented in standard benchmarks. We contribute
various statistics gathered from the large dataset, e.g., data type
distributions, operator frequency, string length distribution and

3 DATASETS

In this section we focus on the dataset characteristics before delving
into the query workload characteristics in Sec. 4.

3.1 Strings are Everywhere

The TPC-H benchmark uses integer keys for all relations. In contrast,
our real-world dataset mostly features strings as keys: ISO country
codes are used to identify countries, IANA codes for airports and
ISBNs for books. UUIDs or other alphanumeric identifiers are also
common choices where pre-established keys are not available. All
those different flavors of “surrogate” keys have one thing in common:
They are stored as strings in the database, i.e., either as VARCHAR,
CHAR or TEXT depending on the DBMS and administrator.
Similarly, other non-key columns that a DBA would normally
specify as INTEGER or even as a boolean are also commonly stored
as strings. Our dataset shows that more than 60% of the single-
character strings are @ or 1. With a combined frequency of 4.5%,
the characters “Y” and "N” are also very popular to represent”yes”
and “no”, respectively. In a cleanly designed schema, those columns
would be represented as booleans. Another common pattern is to
store fiscal vears as strings in the form of “2017/18". In ceneral, while

-
String Compression in a DBMS

* Dictionary Compression
— Whole string becomes 1 code, points into a dictionary D

— works well if there are few unique strings (many repetitions)

B
String Compression in a DBMS

 Dictionary Compression disk-block

— Whole string becomes 1 code, points into a dictionary D .\
— works well if there are few unique strings (many repetitions) £

— Allows predicate pushdown select * from T where S=‘no’ o(>@)

B
String Compression in a DBMS

 Dictionary Compression disk-block

— Whole string becomes 1 code, points into a dictionary D

— works well if there are few unique strings (many repetiti

hash table

bucket E\
array value

array

B
String Compression in a DBMS

 Dictionary Compression disk-block

— Whole string becomes 1 code, points into a dictionary D

— works well if there are few unique strings (many repetiti

hash table

bucket E\
array value ?
array 7? D2
.

W Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR
Tim Gubner, Viktor Leis and Peter Boncz, ICDE 2020 (Best Paper Award)

Unique Self-aligned String Region (USSR)

* Dictionary Decompression in table Scan: disk-block

— Inserts (the most useful) dictionary codes into the USSR

— Setup a translation array for dictionary codes to USSR code

hash table

bucket E\E
array value
array D2

[o7 b [

W Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR
Tim Gubner, Viktor Leis and Peter Boncz, ICDE 2020 (Best Paper Award)
Optimistic Splitt

* Reduce the size of the Hash Table (fewer cache misses!): disk-block

— Store small codes (e.g. 16-bits, instead of 64-bits pointers)

— Non-USSR values are exceptions, in a cold area

hash table “optimistic splitting”

~ string

bucket | y heﬂ

arra value | |co

g array | |area USSR D2

o7 b [

\ CWL_

Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR
Tim Gubner, Viktor Leis and Peter Boncz, ICDE 2020 (Best Paper Award)

USSR 1nner Workings

« Gather a global dictionary on-the-fly

« A small (cache-resident) area: only the most useful data

only valid for the query

— The area has a special property: it is a self-aligned memory pointer

 All the pointers into it start the same (have the same bit prefix)

« USSR strings are recognizable quickly by their pointer

« Fast linear hash table for very quick inserts of new strings on-the-fly

0x10110101110101010101

Uniqgue Strings Self-aligned Region

0x10110101111000000000
45bits 19bits
prefix (512Kb)

Data Region

[DEADBEEF] [Hello | [BAADFOOD] [Test 101010101}
1 =
[Hello Wo [[rId [| | |

:' 64 bit Chunks

. Linear Hash Tab!e
| {o | o] HII I'II NN

LYJ
16-bit Index into

Hello Data Region

/E@:lcxlz/lﬁ -bit Hash

512 kB

}256 kB

W Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR
Tim Gubner, Viktor Leis and Peter Boncz, ICDE 2020 (Best Paper Award)

USSR inner workings

« Gather a global dictionary on-the-fly
« A small (cache-resident) area: only the most useful data
— The area has a special property: it is a self-aligned memory pointer
— The strings in the USSR are aligned to eg 8 byte multiples
« precompute the hash (length is part of it), store it before the pointer

 you can identify each USSR string by a small slot number (16 bits)

Unigue Strings Self-aligned Reg.fon

Datg) Region 1
[DEADBEEF| [Hello |BAADFO 0D| [Tes E ||01010101I 512 kB

1 >
[Hello Wo [[rId || |
A O ~_© 7 L_v__J
: 64 bit Chunks

. Linear Hash Tab!e
256 kB
| {o | | |}|| |'|| N s }

LY_J'
/;@: j_cx E/ 16-bit Hash 16-bit Index into

Hello Data Region

B
String Compression in a DBMS

 Dictionary Compression disk-block

— Whole string becomes 1 code, points into a dictionary D

— works well if there are few unique strings (many repetiti

hash table

bucket E\
array value

array

B
String Compression in a DBMS

 Dictionary Compression disk-block

— Whole string becomes 1 code, points into a dictionary D .

— works well if there are few unique strings (many repetitions)

string heap disk-block

* Heavy-weight/general-purpose Compression —
LZ4 bloc
— Lempel-Zipf plus possibly entropy coding - decode

— Zip, gzip, snappy, LZ4, zstd, ...

— Block-based decompression

\ CWL_

String Compression in a DBMS

* Dictionary Compression

— Whole string becomes 1 code, points into a dictionary D

— works well if there are few unique strings (many repetiti

hash table

array

bucket E\ l
Y/

alue string
array heap

* Heavy-weight/general-purpose Compression

— Lempel-Zipf plus possibly entropy coding

— Zip, gzip, snappy, LZ4, zstd,

— Block-based decompression

string heap

disk-block

disk-block

LZ4 block
decode

\ CWL_

String Compression in a DBMS

* Dictionary Compression

— Whole string becomes 1 code, points into a dictionary D

— works well if there are (relatively) few unique strings

hash table

bucket E\g
array value

array

* Heavy-weight/general-purpose Compression

— Lempel-Zipf plus possibly entropy coding

— Zip, gzip, snappy, LZ4, zstd,

— Block-based decompression

string heap

disk-block

disk-block

« must decompress (all=) unneeded values in scan

LZ4 block
decode

« cannot be leveraged in hash tables, sorting, network shuffles

« FSST targets compression of many small textual strings

W FSST: Fast Random Access String Compression
Peter Boncz, Viktor Leis and Thomas Neumann, PVLDB 2020
FSST: Fast Static Symbol Table string compression

* Encode strings as a sequence of bytes, where each byte [0,254] is a

— CODE
- Each code stands for a 1-8 byte
— SYMBOL
corpus rpus
(uncompressed) ymbol table (compressed)
http://in.tum.de 0|http:// 7] 63
www.uni-jena.de 2 |uni-jenal |8 123
www.wikipedia.org 31| .de 3 1854
http://www.vldb.org 41| .org 4 0194
. 5]a 1
- Byte 255 is special code marking 3 igltﬂ g
— EXCEPTION 8 (wikipedi| |8| Small symbol table(s):
9 |vldb 4| RAM: 2.2KB,
followed by 1 uncompressed byte disk/network: ~500B
255

symbol length
Closest existing scheme is RePair, but is >100x slower than FSST (both ways)

\ CWL_

FSST bottom-up symbol table construction

» Evolutionary-style algorithm
« Starts with empty symbol table, uses 5 iterations:
— We encode (a sample of) the plaintext with the current symbol table
« We count the occurrence of each symbol
« We count the occurrence of each two subsequent symbols

— We also count single byte(-extension) frequencies, even if
these are not symbols. For bootstrap and robustness.

— Two subsequent symbols (or byte-extensions) generate a new
concatenated symbol

— We compute the gain (length*freq) of all bytes, old symbols and
concatenated symbols and insert the 255 best in the new symbol table

B
FSST Compression in a DBMS

* Dictionary Compression

i — disk-block
— column (green) contains dictionary codes
. 5 D
— dictionary can be FSST compressed (smaller)
— no decompression on scan; random acces
hash table
vector
bucket
array value
array
vector disk-block

« FSST Compression

B

— eg 64KB block (self-aligned in RAM) starts with symbol takle

— vectors contain pointers into block \
— no decompression on scan; random access possible

— column (brown) contains offsets in string segment

| CWI_

DBtest (@ SIGMOD18

Get Real: How Benchmarks Fail to Represent the Real World

Adrian Vogelsgesang, Michael Haubenschild,
Jan Finis, Alfons Kemper, Viktor Leis, Tobias Muehlbauer, Thomas Neumann, Manuel Then

Tableau Software

{avogelsgesang, mhaubenschild, jfinis, akemper, vleis, tmuehlbauer, tneumann, mthenl}2tableau.com
ABSTRACT 3 DATASETS

Industrial as well as academic analytics systems are usually evalu- In this se
ated based on well-known standard benchmarks, suchas TPC-H ~ into theq pkload g jisti
or TPC-DS. These benchmarks test various components of the
DBMS including the join optimizer, the implementation of the join
and aggregation operators, concurrency control and the sched- 5. In contrast,

uler. However, these benchmarks fall short of evaluating the “real” - 5 Datasets & Queries -. -y

challenges imposed by modern Bl systems, such as Tableau, t Wle

emit machine-generated query workload nOt disclo S ed @ i er‘S;];rlf;alAS]c;

data repositories together with their generated query workload. fing in common:
machine-generated workload posed by Bl tools differs from th) oy as VARCHAR,
“hand-crafted” benchmark queries in multiple ways: Structurally -* . d adm or.
simple relational operator trees often come with extremely complex

we focus on tH ataset cha ics before delving

, 0 .on-k olumns i a DBA would

ormally

sp as INTEGER or even as a boolean are also commonly stored

as strings. 60% of the single-

scalar expressions such that expression evaluation becomes the
limiting factor. At the same time, we also encountered much more
complex relational operator trees than covered by benchmarks. This
long tail in both, operator tree and expression complexity, is not
adequately represented in standard benchmarks. We contribute
various statistics gathered from the large dataset, e g, data type
distributions, operator frequency, string length distribution and

Winl‘troducing: Public BI Benchmark

We downloaded the 50 biggest
Tableau Public Workbooks

» extracted data + (implicit) queries
« removed Tableau/Hyper-specific SQL

A o + 1+
Tableau Hyper APl API Reference 4
- Example: execute_query (Python)
e a q
Prints the values in a table, row by row.

Tableau Hyper API

What's New with connection.execute_query(query=F"SELECT * FROM {TableName('foo')} ") as result:
rows = List({result)
Getting Started print(rows)

Download the Hyper API 4 4

Get it from the CWI Database Architectures (DA) github:
github.com/cwida/public_bi_benchmark

https://github.com/cwida/public_bi_benchmark

A

Introducing: Public BI Benchmark

Workbook | Tables Columns Rows Queries CSV size
: Arade 1 11 9.9M 1 811.4MiB
We downloaded the 50 blggeSt Bimbo 1 12 74.2M 2 3.0GiB
. CMSprovider 2 52 18.6M 3 3.9GiB
Tableau Public Workbooks CityMaxCapita 1 31 912.7K 10 333.0MiB
CommonGovernment 13 728 141.1M 38 102.5GiB
e extracted data + (ImpIICIt) queries Corporations 1 27 T41.7TK 1 202.2MiB
Eixo 1 80 7.6M 24 6.4GiB
+ removed Tableau/Hyper-specific SQL Euro2016 1 11 2.1M 1 390.6MiB
Food 1 6 5.2M 1 205.9MiB
Generico 5 215 114.1M 38 64.5GiB
HashTags 1 101 511.5K 12 640.2MiB
Hatred 1 31 873.2K 26 309.4MiB
IGlocationsl 1 18 81.6K 3 6.6MiB
IGlocations2 2 40 4.3M 13 1.8GiB
IUBLibrary 1 27 1.8K 3 443.3KiB
MLB 68 3733 32.5M 95 8.2GiB
Taxpayer 10 280 91.5M 22 17.1GiB
Telco 1 181 2.9M 1 2.3GiB
TrainsUK1 4 87 12.9M 8 3.9GiB
TrainsUK?2 2 74 31.1M 1 12.2GiB
USCensus 3 1557 9.4M 8 13.6GiB
Uberlandia 1 81 7.6M 24 6.4GiB
Wins 4 2198 2.1M 13 3.9GiB
YaleLanguages 5 150 5.8M 13 1.5GiB
Total | 206 13395 988.9M 646 386.5GiB

ble 3.1: Public BI benchmark workbooks

Get it from the CWI Database Architectures (DA) github:

qgithub.com/cwida/public bi benchmark

https://github.com/cwida/public_bi_benchmark

 Dirty Data (exceptions, errors)

A look at real BI user data

« Empty/missing values that are not null (empty quotes, whitespace)

20 lines (20 sloc) 15 KB

Raw Blame History L[J & 1T

We can make this file beautiful and searchable if this error is corrected: It looks like row 9 should actually have 4 columns, instead of 2. in line 8.

[-1]-1]e] |1300229226|
[-1]-1]e] |130022
-1]-1]e] [130€22922
[-1]-1]e] [1300229226 |
-1]-1]e| | 1300229226
-1|-1]e]| |1300229226|
[-1]-1]e] (1300229226
-1]-1]e] [1300229226 |
|-1]-1]@|null|1300229226|
-1]-1]e| [1300229226 |

|e|e|e| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|423456|MEDICAL,

|@|e|e| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|423456|MEDICAL,
|@|@| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|423458|MEDICAL, DEN
|@|@|e| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|42345@|MEDICAL, C
|@|@|8| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|42345@|MEDICAL, DEN
|@|@|e| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|42345@|MEDICAL, DEN
|@|@|8| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|423450|MEDICAL, C
|@|@|8| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|42345@|MEDICAL, DEN
|@|@|@| INDUSTRIAL PRODUCTS & SERVICES|TEST & MEASUREMENT SUPPLIES|339111|LABC
|@|@|@|MEDICAL |[MEDICAL EQUIPMENT AND ACCESSORIES AND SUPPLIES|42345@|MEDICAL, DENTAL,

A look at real BI user data

 Dirty Data (exceptions, errors)
« Empty/missing values that are not null (empty quotes, whitespace)

» Leading/trailing whitespace (fillers)

20 lines (20 sloc) 15 KB Raw Blame History [J #° 11

We can make this file beautiful and searchable if this error is corrected: It looks like row 9 should actually have 4 columns, instead of 2. in line 8.

JRK CONTRACT OFFICE 28 |WA|36 | VA260BP@EA3 |2009-10-01 @0:00:00 |3600|87990|87990 |DEPARTMENT OF VET
JRK CONTRACT OFFICE 28 |WA|36 | VA260BP@ER3 |2009-11-16 @0:00:00 |3600|87990|87990 |DEPARTMENT OF VET
CONTRACT OFFICE 20 |WA|36 | VA260BPOEE3 [2009-11-19 06:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ
K CONTRACT OFFICE 20 |WA| 36 | VA26@BPERA3 | 2009-12-16 00:00:80 |360@|87990|87990 |DEPARTMENT OF VETE
CONTRACT OFFICE A|36|VA2695P9993=2999-12-39 ©0:00:00 |3600|87990|87990 | DEPARTMENT OF VETERZ
CONTRACT OFFICE 20 |WA|36 | vA260BPRGE3 |2009-12-30 06:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ
K CONTRACT OFFICE 20 |WA|36 | VA260BPBRE3 | 2009-18-19 00:08:60 |360@|8799@|87990 |DEPARTMENT OF VETE
CONTRACT OFFICE 20 |WA|36 | VA260BPRRE3 | 2099-16-19 ©0:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ
ZTWORK CONTRACT OFFICE 12 |WI|36|VA69DBPGO26 [2609-11-03 06:00:00 |3600|194876|194870 | DEPARTMENT C

CONTRACT OFFICE 20 |WA|36|VA260BPO0O03 [2009-10-26 00:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ

A

A look at real BI user data

 Dirty Data (exceptions, errors)

« Empty/missing values that are not null (empty quotes, whitespace)

» Leading/trailing whitespace (fillers)

« Wrong typed: eg numbers and dates stored in VARCHAR columns

20 lines (20 sloc) 15 KB Raw Blame History [J #° 11

We can make this file beautiful and searchable if this error is corrected: It looks like row 9 should actually have 4 columns, instead of 2. in line 8.

DRK CONTRACT OFFICE 28 |WA|36|VA260BPo@R3 |2009-10-01 00:00:00 |3600|87990|87990|DEPARTMENT OF VET
DRK CONTRACT OFFICE 28 |WA|36|VA260BPO@R3 |2009-11-16 80:00:00 |3600|87990]|87990|DEPARTMENT OF VEI
CONTRACT OFFICE 20 |WA|36|VA260BPOGO3 [2009-11-19 90:00:00 |3600|87990|87998|DEPARTMENT OF VETER/
K CONTRACT OFFICE 20 |WA|36|VvA260BPe@03 |2009-12-16 00:00:00 |3600|87990|87998|DEPARTMENT OF VETE
CONTRACT OFFICE A|36|VAZEBBP8663=2699—12—39 90:00:00 |3600|87990|87990|DEPARTMENT OF VETERA
CONTRACT OFFICE 20 [WA|36|VA260BP00@3 [2009-12-30 00:00:00 |3606|87990|87990|DEPARTMENT OF VETERZ
K CONTRACT OFFICE 20 |WA|36|VA260BPER03 0 0 360087990 | 87998 | DEPARTMENT OF VETE
CONTRACT OFFICE 20 |WA|36|VA260BP0@@3 |2009-10-19 00:00:00 |3600|87990|87990|DEPARTMENT OF VETER/
ZTWORK CONTRACT OFFICE 12 |WI|36|VA69DBPOG26 [2009-11-83 00:00:00 |3600|194870|194870|DEPARTMENT C

CONTRACT OFFICE 20 |WA|36|VA260BPO0O03 [2009-10-26 00:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ

\ CWL_

A look at real BI user data

 Dirty Data (exceptions, errors)

« Empty/missing values that are not null (empty quotes, whitespace)
 Leading/trailing whitespace (fillers)

« Wrong typed: eg numbers and dates stored in VARCHAR columns

« Composed strings from different types+distributions (eg emails, urls)

20 lines (20 sloc) 15 KB Raw Blame History [J & 1T

We can make this file beautiful and searchable if this error is corrected: It looks like row 9 should actually have 4 columns, instead of 2. in line 8.

DRK CONTRACT OFFICE 28 |WA|36|VA260BPo0R3 |2009-10-01 00:00:00 |3600|87990|87990|DEPARTMENT OF VET
DRK CONTRACT OFFICE 28 |WA|3W |2009-11-16 80:00:00 |3600|87990]|87990|DEPARTMENT OF VEI
CONTRACT OFFICE 20 |WA|36|VA260BPOGO3 [2009-11-19 90:00:00 |3600|87990|87998|DEPARTMENT OF VETER/
K CONTRACT OFFICE 20 |WA|36|VvA260BPe@03 |2009-12-16 00:00:00 |3600|87990|87998|DEPARTMENT OF VETE
CONTRACT OFFICE A|36|VAZEBBP8663=2699—12—39 90:00:00 |3600|87990|87990|DEPARTMENT OF VETERA
CONTRACT OFFICE 20 [WA|36|VA260BP00@3 [2009-12-30 00:00:00 |3606|87990|87990|DEPARTMENT OF VETERZ
K CONTRACT OFFICE 20 |WA|36|VA260BPER03 0 0 360087990 | 87998 | DEPARTMENT OF VETE
CONTRACT OFFICE 20 |WA|36|VA260BP0@@3 |2009-10-19 00:00:00 |3600|87990|87990|DEPARTMENT OF VETER/
ZTWORK CONTRACT OFFICE 12 |WI|36|VA69DBPOG26 [2009-11-83 00:00:00 |3600|194870|194870|DEPARTMENT C

CONTRACT OFFICE 20 |WA|36|VA260BPO0O03 [2009-10-26 00:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ

A

A look at real BI user data

 Dirty Data (exceptions, errors)

« Empty/missing values that are not null (empty quotes, whitespace)
 Leading/trailing whitespace (fillers)

« Wrong typed: eg numbers and dates stored in VARCHAR columns

« Composed strings from different types+distributions (eg emails, urls)

« Correlations between columns, or even repeated columns

20 lines (20 sloc) 15 KB Raw Blame History [J & 1T

We can make this file beautiful and searchable if this error is corrected: It looks like row 9 should actually have 4 columns, instead of 2. in line 8.

JRK CONTRACT OFFICE 28 |WA| 36| VA260BP@0A3 |2009-10-01 @0:00:00 |3600|87990|87990 |DEPARTMENT OF VET
JRK CONTRACT OFFICE 28 [WA|3 |2009-11-16 ©0:00:00 |366@DEPARTMENT OF VET

CONTRACT OFFICE 20 |WA|36|VA260BPOGO3 [2009-11-19 90:00:00 |3600|87990|87998|DEPARTMENT OF VETER/
K CONTRACT OFFICE 20 |WA|36|VvA260BPe@03 |2009-12-16 00:00:00 |3600|87990|87998|DEPARTMENT OF VETE
CONTRACT OFFICE A|36|VAZEBBP8663=2699—12—39 90:00:00 |3600|87990|87990|DEPARTMENT OF VETERA
CONTRACT OFFICE 20 [WA|36|VA260BP00@3 [2009-12-30 00:00:00 |3606|87990|87990|DEPARTMENT OF VETERZ

K CONTRACT OFFICE 20 |WA|36 | VA260BPBRE3 609-10-19 0@8:60:00 N3660|8799@|87990 | DEPARTMENT OF VETE
CONTRACT OFFICE 20 |WA|36 | VA260BPRRE3 | 2099-16-19 ©0:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ
ZTWORK CONTRACT OFFICE 12 |WI|36|VA69DBPGO26 [2609-11-03 06:00:00 |3600|194876|194870 | DEPARTMENT C
CONTRACT OFFICE 20 |WA|36 | VA260BPOEE3 |2009-10-26 06:00:00 |3600|87990|87990 |DEPARTMENT OF VETERZ

\ CWL_

Suboptimal Data Representations

* Negative effects
— Data is much larger than needs to be
* verbose strings, correlation=repetition, prevented dictionary compression
— Queries take more time than they would need

¢ expensive string processing, expensive casts, no predicate push-down

» “Users are doing a bad job” = “should fix their data and schema”
— This is not going to happen! End-users not even interested.

— Move to cloud =» less DBA attention

=>» systems should automatically compensate for suboptimal data
White-Box Compression one of the answers

» smaller data, more efficient query processing

White-box Compression: Learning and Exploiting Compact Table Representations
Bogdan Ghita,Diego Tome, Peter Boncz CIDR 2020

White-Box Compression

» Configurable, data-dependent, compression schemes

— Block or row-group header describes decompression function

F(D

header

100011

111000 »

101001

Block of data

« Some Research Questions this raises:
— What could these functions look like?
— How does the system learn these functions during compression?
— How much will compression rate improve?
— How to exploit these functions in query optimization and execution?

— How can a system quickly parse and execute such functions?

ACWL_

White-Box Compression Example

A B
"GSA_8350" "GENERAL SERVICES ADMINISTRATION"
"GSA_8351" "GENERAL SERVICES ADMINISTRATION"
"HHS_2072" "HEALTH AND HUMAN SERVICES"
"TREAS_4791" "TREASURY"
"TREAS_4792" "TREASURY"
"HHS_2073" "HEALTH AND HUMAN SERVICES"

"GSA_8352" "GENERAL SERVICES ADMINISTRATION"

PEIELELTS
Architectures

White-Box Compression Example

Logical Physical

A B P Q
"GSA_8350" "GENERAL SERVICES ADMINISTRATION" 0 8350
"GSA_8351" "GENERAL SERVICES ADMINISTRATION" 0 8351
"HHS_2072" "HEALTH AND HUMAN SERVICES" 1 2072
"TREAS_4791" "TREASURY" 2 4791
"TREAS_4792" "TREASURY" 2 4792
"HHS_2073" "HEALTH AND HUMAN SERVICES" 1 2073
"GSA_8352" "GENERAL SERVICES ADMINISTRATION" 0 8352

A concat(map (P, dict ap), const("_"), format(Q,"%d"))
B = map(P,dictgp)

key wvalue key value

0 "GSA" 0 "GENERAL SERVICES ADMINISTRATION"
1 "HHS" 1 "HEALTH AND HUMAN SERVICES"

2 "TREAS" 2 "TREASURY"

d'iCtAp diCth

\ CWL_

White-Box Compression Example

Logical Physical
A B P Q

"GSA_8350" "GENERAL SERVICES ADMINISTRATION" 0 8350
"GSA_8351" "GENERAL SERVICES ADMINTSTRATION" 0 8351
"HHS_2072" "HEALTH AND HUMAN SERVICES" 1 2072
"TREAS_4791" "TREASURY" 2 4791
"TREAS_4792" "TREASURY" 2 4792
"HHS_2073" "HEALTH AND HUMAN SERVICES" 1 2073
"GSA_8352" "GENERAL SERVICES ADMINTSTRATION" 0 8352

A = concat(map(P,dictap), const("_"), format(Q, "%d"))
B map (P, dictpp)

*
mep)+ ‘eXception column’

N

P key value

0 "GENERAL SERVICES ADMINISTRATION"
1 "HEALTH AND HUMAN SERVICES"
2 "TREASURY"

dictpp

\ CWI_

White-Box Compression Example

Logical Physical
A B P Q r
B
"GSA_8350" "GENERAL SERVICES ADMINISTRATION" 0 8350 | .C
"GSA_8351" "GENERAL SERVICES ADMINISTRATION" 0 8351 Query
"HHS_2072" "HEALTH AND HUMAN SERVICES" 1 2072 X E t
"TREAS_4791" "TREASURY" 2 4791 / \ Xecutor
"TREAS_4792" "TREASURY" 2 4792
"HHS_2073" "HEALTH AND HUMAN SERVICES" 1 2073 O ke TREASS:
"GSA_8352" "GENERAL SERVICES ADMINISTRATION" 0

8352 | |

A B
A = concat(map(P,dict ap), const("_"), format(Q, "%d"))

B = map(P,dictgp)

¢
w8
/N

P key value

FOR

0 "GENERAL SERVICES ADMINISTRATION"
1 "HEALTH AND HUMAN SERVICES"
2 "TREASURY"
101110/ [100011] [100011
dict 101010/ |111000] 101010
e 100010 [101001] [100110
SELECT tab.B, dim.C Blocks of data

FROM tab JOIN dim ON tab.B = dim.C
WHERE tab.A LIKE ’'TREASS%'

|\ CWI

key value
0 n GSAII
1 "HHS"

2 "TREAS"

White-Box Compression Example

Logical Physical
A B P Q

"GSA_8350" "GENERAL SERVICES ADMINISTRATION" 0 8350
"GSA_8351" "GENERAL SERVICES ADMINISTRATION" 0 8351
"HHS_2072" "HEALTH AND HUMAN SERVICES" 1 2072
"TREAS_4791" "TREASURY" 2 4791
"TREAS_4792" "TREASURY" 2 4792
"HHS_2073" "HEALTH AND HUMAN SERVICES" 1 2073
"GSA_8352" "GENERAL SERVICES ADMINISTRATION" 0 8352

A = concat(map(P,dictap), const("_"), format(Q, "%d"))
B = map(P,

N

P

diCtBP)

*
w3

key wvalue

"HEALTH AND HUMAN SERVICES"
"TREASURY"

N = O

"GENERAL SERVICES ADMINISTRATION"

dictgp

SELECT tab.B, dim.C

FROM

tab JOIN dim ON tab.B

WHERE tab.A LIKE ’'TREAS%’

dim.C

LIKE 'TREAS%'

| Correlation

C AN -"BBY Logical
columns
T 3 4
[[

P Q Physical
columns

Exception column

Expression
tree

Block of data

| CWL_

White-Box Compression Example

Logical Physical
A B P Q

"GSA_8350" "GENERAL SERVICES ADMINISTRATION" 0 8350
"GSA_8351" "GENERAL SERVICES ADMINISTRATION" 0 8351
"HHS_2072" "HEALTH AND HUMAN SERVICES" 1 2072
"TREAS_4791" "TREASURY" 2 4791
"TREAS_4792" "TREASURY" 2 4792
"HHS_2073" "HEALTH AND HUMAN SERVICES" 1 2073
"GSA_8352" "GENERAL SERVICES ADMINISTRATION" 0 8352

A

*

concat(map(P,dictap), const("_
B = map(P,dictsp)

o8

/N

P key

value

N = O

"GENERAL SERVICES ADMINISTRATION"
"HEALTH AND HUMAN SERVICES"
"TREASURY"

SELECT tab.B,
tab JOIN dim ON tab.B =

FROM

WHERE tab.A LIKE

dictgp

dim.C

"TREAS%'

"), format(Q, "%d"))

dim.C

COALESCE(X TREASURY)AS B,C

| Query
/ Executor
o)

X LIKE 'TREAS%'
ORP =2

1

Scan

Block of data

\ CWL_

Summary

« USSR string compression: global delta-compression on-the fly
— Transforms string operations into integer operations
— Smaller & faster hash tables (joins, aggregates) — “optimistic splitting”
« FSST string compression: makes strings ~2x shorter
— Allows random-access =» predicate pushdown + compressed execution
— Faster decompression and better ratios than LZ4 + snappy!!

— MIT licensed, code, paper + replication package github.com/cwida/fsst

— System-architectures challenge: managing multiple symbol tables in-flight
* White-box compression learns better table representations
Bl users create poorly shaped datasets, likely won’t change
— smaller storage (better datatypes, less redundancy)
— compression expressions are learned from the datal!
— Lot’s of angles of research here (it is a learning problem!)

Public Bl Benchmark qgithub.com/cwida/public bi benchmark

https://github.com/cwida/public_bi_benchmark
https://github.com/cwida/public_bi_benchmark

