

Evaluating Matching Techniques with Valentine*

CHRISTOS KOUTRAS

*Work presented in IEEE ICDE 2021

From Data Integration to Schema Matching

- Organizations gather heterogeneous data into data lakes
 - Data scientists spend most of their time on capturing relevance
 - Data Integration Problem: Relevant data sources are unlinked

- Need for Schema Matching
 - (Semi-)Automated methods with the goal of finding links among datasets
 - E.g. Related columns among Tabular Data

From Schema Matching to Dataset Discovery

• Dataset Discovery is a critical task for organizing a data lake

- Navigate numerous data sources to find relationships for a given dataset
- Schema Matching is a core component of any modern dataset discovery pipeline

Schema Matching in research

- Abundance of matching methods
- No comparison in 20 years
- No evaluation datasets
- Outdated metrics

Generic Schema Matching with Cupid

Jayant Madhavan¹ University of Washington jayant@cs.washington.edu Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching

Sergey Melnik* Hector Garcia-Molina

Erhard Rahm University of Leipzig, Germany rahm@informatik.uni-leipzig.de

Erhard Rahm Hong-Hai Do University of Leipzig Automatic Discovery of Attributes in Relational Databases hong@informatik.uni-leipzig Meihui Zhang Marios Hadjieleftheriou Beng Chin Ooi National University of Singapore Seeping Semantics: Linking Datasets using Word bc@comp.nus.edu.sa stava Embeddings for Data Discovery earch Raul Castro Fernandez⁻ Creating Embeddings of Heterogeneous Relational **Datasets for Data Integration Tasks**

> Riccardo Cappuzzo cappuzzo@eurecom.fr EURECOM

COMA - A system for flexible combination of

schema matching approaches

Paolo Papotti papotti@eurecom.fr EURECOM

Saravanan Thirumuruganathan sthirumuruganathan@hbku.edu. qa QCRI, HBKU

A missing link with Dataset Discovery literature

Finding Related Tables

• Result: none of the dataset discovery methods (~last 10 years) employ them!

Dataset Discovery

methods typically

implement their own

matching methods

Anish Das Sarma[#], Lujun Fang[†], Nitin Gupta[#], Alon Halevy[#], Hongrae Lee[#], Fei Wu[#], Reynold Xin[‡], Cong Yu[#]

InfoGather: Entity Augmentation and Attribute Discovery By Holistic Matching with Web Tables

> Mohamed Yakout **Purdue University** myakout@cs.purdue.edu

Kris Ganiam Microsoft Research krisgan@microsoft.com

dhuri Stitching Web Tables for Improving Matching Quality earch off.com

> Oliver Lehmberg, Christian Bizer Data and Web Science Group, Universität Mannheim

> > Aurum: A Data Discovery System

n, Sam Madden, Michael Stonebraker

Table Union Search on Open Data

Fatemeh Nargesian University of Toronto

Erkang Zhu University of Torontc ekzhu@cs.toronto.edu fnargesian@cs.toronto.edu

{oli,c

Dataset Discovery in Data Lakes

Finding Related Tables in Data Lakes for Interactive orman W. Paton, Nikolaos Konstantinou ity of Manchester, Manchester, UK **Data Science** anchester.ac.uk

Yi Zhang yizhang5@cis.upenn.edu University of Pennsylvania Philadelphia, PA

Zacharv G. Ives zives@cis.upenn.edu University of Pennsylvania Philadelphia, PA

Valentine to the rescue

Current limitations

- 8 No comparative study
- No specific relatedness scenarios
- No evaluation datasets
- No open-sourced methods
- Tough/impossible deployment for Dataset Discovery

Our contributions

- Most comprehensive effectiveness/efficiency study to date
- Relatedness scenarios accustomed to Dataset Discovery
- Oataset fabrication
- 6 SotA methods + a baseline
- Easily deployed and extensible

Matching in Dataset Discovery

• Six categories of matchers are used:

- Valentine brings the best of schema matching
 - Covers all matcher categories
 - Sophisticated methods that employ several intuitions and techniques

A new way of evaluating schema matching

- Ranked Matches serve better the needs of Dataset
 Discovery
- Recall @ ground truth shows the quality of the ranking a method returns rather than its ability to filter out irrelevant matches

Conventional Schema Matching Evaluation

Match Results Client <-> C_ID Country <-> Cntr

Evaluation Precision: 0.5

Recall: 1/3

Valentine's Novel Evaluation

Ranked Match Results

Evaluation

Client - C_ID: 0.85 Country - Cntr: 0.67 PO - P_Code: 0.35

Recall @ ground truth: 1

Dataset Relatedness Scenarios

• Evaluate on dataset pairs that respect specific relatedness semantics

Joinable or Semantically Joinable | Unionable or View-Unionable

Client	Street	PO	Client	Street	PO	
J. Watts	2, Tea St.	39499	J. Watts	2, Tea St.	39499	
B. Mei	8, Fly St.	34682	B. Mei	8, Fly St.	34682	
Ť	Ť	Ť		1 I	Ť	
¥	¥	¥		+	+	
C_Name	Addr	P_Cod		Addr	P_Code	C_ID
B. Mei	8, Fly St.	34682		8, Fly St.	34682	C10012
Q. Man	3, Bay St.	35472		3, Bay St.	35472	C23672

Dedicated Fabrication Process

- Fabricate dataset pairs that follow the relatedness scenarios
- Based on a source table create pairs by employing
 - Horizontal/Vertical splits
 - Noise injection in Schemata/Instances

Valentine's Schema Matching Methods

- Consolidates the best of schema matching efforts (last 20 years)
- Schema-based
 - Cupid Similarity Flooding COMA
- Instance-based
 - Distribution-based COMA instance
 - Baseline based on approximate instance set overlaps
- Hybrid
 - SemProp EmbDI

Findings – Schema Based Methods

- Noisy schemata critically affect effectiveness and consistency
- Schema information (e.g. data types) and contextual information not insightful

Findings – Instance Based Methods

- View unionable and semantically-joinable scenarios are considerably harder
- High skew in effectiveness for all methods/scenarios

Findings – Hybrid Methods

- Low effectiveness and high skew
- Embeddings pretrained or local ones are still not a trustworthy standalone tool for matching

Findings on ING Data

Methods	ING #1	ING #2
Cupid	0.71	0.5
Sim Flooding	0.36	0.44
COMA Schema	0.79	0.12
COMA Instance	0.79	0.14
Dist based	0.86	0.88
Baseline	0.79	0.62
EmbDI	0.71	0.23

- Distributions of values can bring helpful insights
- Schema-based methods have very low effectiveness

Efficiency Results

Methods	Avg Runtime (sec)
Cupid	9.64
Sim Flooding	7.09
COMA Schema	1.67
COMA Instance	318.07
Dist based	71.16
SemProp	735.25
Baseline	522.94
EmbDI	4817.87

- Schema-based considerably faster
- Training embeddings can be very inefficient

Lessons Learned

- There is no matching method that is consistently the best
- Embeddings should only be used together with other techniques
- Parameterization can be a daunting task availability of ground truth can help
- Baselines can perform well
- Humans should be incorporated
- Schema Matching doesn't scale expensive to deploy

Valentine in Action [Demo in VLDB 2021]

- Schema Matching systems come with an outdated GUI
- No deployment at scale deployment in a data lake
- ¹ No easy-to-use and complete evaluation system available
- Offer Valentine's utilities through a user-friendly GUI
 - Offer a scenario-driven dataset fabricator
 - Enable users to conduct extensive experiments
- Enable users to deploy Valentine for holistic matching in a data lake

🖬 Matcher 🖹 Results 🗹 Verified Matche	5							
	Select algorithms to run							
Select Tables a)	Coma	Cupid	Distribution Based	Jaccard Levenshtein				
Musicians_1	Default Params	Default Params	Default Params	Default Params				
musicians_j_1.csv			Phase 1 threshold:					
musicians j 2.csv				Similarity Flooding				
			Phase 2 threshold: 073	EmbDI				
Wusicians_2			quantiles:	Default Params				
> A Musicians_3			-					
> 🔲 🕼 Musicians_4			37	Matcher 💼 Results 😒 Verified Matches				
ADD NEW SOURCE			b)	Job: 756d4128-11ef-47af-818a-6d0bce0 Algorithm: Cupid	Df7afd			
		SUBMIT JOB		SHOW/HIDE MATCHES DEL	Target Column	Similarity		
				musicians_j_1.familyNameLabe	el musicians_sj_2.familyName		VERIFY DISCARD	_
				musicians_sj_1.musicianLabel	musicians_sj_2.musicianName		VERIFY DISCARD	
				musicians_sj_1.fatherLabel	musicians_sj_2.fatherName		VERIFY DISCARD	
				musicians_sj_1.motherLabel	musicians_sj_2.motherName		VERIFY DISCARD	
				musicians_j_1.residenceLabel	musicians_sj_2.residence		VERIFY DISCARD	
				musicians_j_1.familyNameLabe	el musicians_sj_1.genderLabel		VERIFY DISCARD	
				musicians_j_1.familyNameLabe	el musicians_sj_1.geniusNameLabel		VERIFY DISCARD	
				musicians i 1.musician	musicians si 2.musicianName		VERIFY	

Lessons Learned: Matching in a Data Lake

- Deploying matching in a data lake is a daunting task
 - Resource expensive
 - All-pairs comparison is inefficient / SOTA methods difficult to scale
- Automated matching techniques are not always reliable
 - They work under specific assumptions about the data
 - Such assumptions may not apply in big data repositories
 - Human refinement is necessary

Prospects in Large-scale Matching

- Incorporate human knowledge in development of methods
 - Instead of using humans in refinement, use them in the beginning
 - There always exists partial knowledge of the underlying data
- Build robust models
 - Model human knowledge in order to leverage modern DL methods
 - Can generalize well

Visit https://delftdata.github.io/valentine/ !

Links to our GitHub Repos

- Code for deployment
- Code for dataset fabrication
- In detail experimental results

All fabricated dataset pairs used in the paper

Updates regarding Valentine